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Abstract

This paper extends recent work on nonlinear Independent Com-

ponent Analysis (ICA) by introducing a theoretical framework

for nonlinear Independent Subspace Analysis (ISA) in the pres-

ence of auxiliary variables. Observed high dimensional acoustic

features like log Mel spectrograms can be considered as surface

level manifestations of nonlinear transformations over individual

multivariate sources of information like speaker characteristics,

phonological content etc. Under assumptions of energy based

models we use the theory of nonlinear ISA to propose an algo-

rithm that learns unsupervised speech representations whose sub-

spaces are independent and potentially highly correlated with the

original non-stationary multivariate sources. We show how non-

linear ICA with auxiliary variables can be extended to a generic

identifiable model for subspaces as well while also providing

sufficient conditions for the identifiability of these high dimen-

sional subspaces. Our proposed methodology is generic and can

be integrated with standard unsupervised approaches to learn

speech representations with subspaces that can theoretically cap-

ture independent higher order speech signals. We evaluate the

gains of our algorithm when integrated with the Autoregressive

Predictive Coding (APC) model by showing empirical results on

the speaker verification and phoneme recognition tasks.

Index Terms: ISA, speech representation learning, unsupervised

learning

1. Introduction

The speech signals that we observe can be viewed as high-

dimensional surface level manifestations of samples from in-

dependent non-stationary sources, that are entangled via a non-

linear mixing mechanism. These sources can be entangled at

session, utterance or segment levels [1]. Speech representations

learnt by training deep recurrent models [2, 3] over these surface

level features fail to capture the original signals in their purest

disentangled form. Unsupervised disentanglement of speech

representations has been an active area of research [4, 5] since it

has been shown that recovering independent factors of variation

can improve the performance of downstream tasks like Auto-

matic Speech Recognition (ASR), especially under low resource

constraints and domain mismatch [1]. Inspired by this, we pro-

pose an algorithm to learn unsupervised speech representations

with independent subspaces, each of which can capture distinct

disentangled source signals. These distinct subspaces can be po-

tentially informative of patterns based on speaker characteristics

or subphonetic events. This can be useful in learning a variety

of acoustic models given very few labeled samples for each.

Recently [6] it has been shown that learning disentangled

representations is impossible without explicit bias on the algo-

rithm and the data. Hence, we leverage a more principled ap-

proach to capturing the independent sources through the lens of

nonlinear Independent Subspace Analysis (ISA) in the presence

of auxiliary variables.

Nonlinear Independent Component Analysis (ICA) is a

provably unidentifiable problem [7] as opposed to linear ICA

[8] which is identifiable given non-gaussian sources and other

fundamental restrictions on the mixing matrix [9]. Attempts

[10, 11, 12] have been made to solve nonlinear ICA for i.i.d dis-

tributions under slightly stronger assumptions on the generative

process [13, 14]. Recent progress in the field [15, 16] has re-

volved around a generic identifiable model that renders the latent

sources conditionally independent in the presence of auxiliary

variables. But most of the work [17, 18] has been focused on uni-

variate sources which means that these models can’t be directly

applied to speech where the source signals are very high dimen-

sional. Hence, we extend the auxiliary variables model proposed

by [17] for multivariate sources by first stating sufficient condi-

tions for the separability of sources and then, providing training

objectives suitable for learning speech representations with finite

audio samples. Nonlinear ISA is leveraged to learn unsupervised

features on large unlabeled speech datasets. Using these features,

simpler (linear) models are learnt on small labeled datasets.

Numerous approaches [5, 19, 20, 21] have been proposed

for learning unsupervised speech representations. Recent ones

[2, 5] have been based on predictive coding schemes that use lan-

guage model like objectives. In parallel, there have been efforts

to learn quantized representations via temporal segmentation

and phonetic clustering [22] so as to map frame representations

to linguistic units. But such models are fairly complicated and

tricky to train. Also, most of these methods learn highly en-

tangled representations that suffer from spurious correlations in

the underlying data and thus fail to generalize. Our proposed

algorithm improves upon these approaches by advocating for

independent subspaces attained via additional constraints in the

original optimization objectives. We begin by providing a theo-

retically identifiable model for nonlinear ISA and then discuss

how the model can be incorporated into existing methods for

learning unsupervised speech representations.

2. Theory

We introduce a generative model of the observed data that we

assume henceforth and present conditions under which, the orig-

inal multi-dimensional sources are identifiable. We assume that

the observed data x ∈ X ⊂ R
nd is generated by applying a

non-linear invertible transform f on n source signals s1 . . . sn ∈
S ⊂ R

d. We are given a dataset D = {(x(i),u(i))}Ni=1 with

N samples where each x(i) = f(s(i)) , s(i) =
⊗n

j=1 s
(i)
j =

[s
(i)
1 . . . s

(i)
n ]1. Here, u(i) ∈ U ⊂ R

p denotes the corresponding

auxiliary variable for x(i) and f : Sn → X is a non-linear

mixing function (eqn. 1), which is invertible and continuously

differentiable almost everywhere (a.e). The objective is to learn

representations that can recover the source signals ({si}
n
i=1)

up to an identifiability factor that we shall define shortly. For

1Here
⊗

denotes the concatenation operation.



notational convenience, we denote the jth scalar element in a

vector z as zj and the ith consecutive d-dimensional vector (ith

subspace) in z as zi or as zi: =
[
z(i−1)d+1 . . . zid

]
.

Model The source distributions {pi(si)}
n
i=1 are assumed to

be independent given the auxiliary variable u (eqn. 1) and their

densities are given by conditional energy based models (eqn. 2)

which have universal approximation capabilities [16].

x = f(s) log p(s|u) =
n∑

i=1

log pi(si|u) (1)

pi(si|u) =
expφi(si)

T ηi(u)

Zi(u)

φi : S → R
m

ηi : U → R
m (2)

Definition of Identifiability We shall define the original

sources {si}
n
i=1 to be identifiable if there exists an algorithm

that takes as input a pair comprising of the observed sample and

the corresponding auxiliary variable (x = f(s),u), and outputs
[
g1(sπ1

), . . . , gn(sπn)
]
, for some permutation π : Nn → N

n

over {1 . . . n}. Each gi : S → S is an invertible (a.e) function

and is defined as a function of a single distinct source sπi
.

Popular algorithms [8] in linear ICA [9] rely on estimators

of Mutual Information (MI) to be able to separate the observed

mixed samples into samples from the original source signals.

Similarly, for nonlinear ICA we compute MI between the ob-

served and auxiliary variables (I(x,u) in eqn. 3) using Noise

Contrastive Estimation (NCE) [23]. A nonlinear logistic clas-

sifier is used to distinguish between correct (observed) pairs

(x(i),u(i)) and randomly generated incorrect pairs (x(i), ũ(i))

where ũ(i) is drawn from the marginal distribution over u. The

regression function for this logistic classifier is given by r(x,u),
where hi : X → R

d , ψi : R
d × R

p → R ∈ L2 are sufficiently

smooth universal function approximators (neural networks) and

∀i , hi is invertible a.e.

I(x,u) =

∫

x,u

log
p(x,u)

p(x)p(u)
dP(x,u) =

∫

r(x,u) dP(x,u)

where, r(x,u) =

n∑

i=1

ψi(hi(x),u) (3)

The following main ISA separation theorem states that the vector

h(x) =
⊗n

i=1 hi(x) ∈ R
nd, with subspaces hi(x) ∈ R

d can

recover si since ∃π, {gi}
n
i=1 such that hi(x) = gi(sπi

).

Theorem 1. Given that we observe the dataset D with N sam-

ples: {x(i) = f(s(i)),u(i)}Ni=1 generated by a model based on

eqns. (1, 2), then under the following assumptions2:

1. Realizability Assumption: Given infinite (N → ∞) sam-

ples one can efficiently learn ψ∗
i , h

∗
i such that the NCE

algorithm can estimate the mutual information I(x,u)
with an arbitrarily small error, using the regression func-

tion r(x,u) which follows the form in eqn. 3.

2. Separability Assumption: ∀s ∈ Sn, z 6= 0 ∈ R
d

with first and second order derivatives given by tensors

∇φi(si) ∈ R
m×d and ∇2 φi(si) ∈ R

m×d×d respec-

tively; ∃{ul}
2nd
l=0 ∈ U2nd+1 such that:

{
n⊗

i=1

([
∇φi(si)

T

(∇2φi(si) ×̄3
3 z)T

]

ζi(ul,u0)

)}2nd

l=1

spans R2nd for ζi(ul,u0) = (ηi(ul)− ηi(u0)),

2The separability assm. requires the auxiliary variables u to have a
sufficiently strong and diverse effect on the source distributions [17].

3×̄3 denotes the 3rd mode product [24].

the subspaces {hi(x)}
n
i=1 can identify the conditionally inde-

pendent sources {si}
n
i=1 up to the definition of identifiability.

Proof Sketch4: For an observed sample x ∈ X , let y =
h∗(x) be given by the optimal functions {h∗

i }
n
i=1. The func-

tions {ψ∗
i , h

∗
i }
n
i=1

5 are learnt using the NCE objective whose re-

gression function is given by r(x,u). Since s = f−1(h−1(y))
is a composition of two invertible transforms, we introduce

v : Rnd → Sn where s = v(y). Also, let f−1 be denoted by g.

From eqn. 3 we know that r(x,u) = log p(x|u)− log p(x),
Using the density transformation rules [25] for invert-

ible functions we can show that, log p(x|u) = log p(s|u) +
log | detJg(x)| and log p(x) = log p(s) + log | detJg(x)| .

Thus, r(x,u) = log p(s|u)− log p(s). Using eqn. 3:

n∑

i=1

ψ∗
i (yi,u) = log p(v(y)|u)− log p(v(y)) (4)

We begin by substituting eqns. 1, 2 in the above result. Also,

since eqn. 4 holds true for {ul}
2nd
l=0 , we can get 2nd + 1

such equations and from each we can subtract the equation

given by u0, which leaves us with 2nd eqns. of the form
∑n
i=1 φi(v(y)i:)

T ζi(ul,u0) − (logZi(ul) − logZi(u0)) =
∑n
i=1 ψ

∗
i (yi,u). Taking the derivative of both sides of this eqn.

w.r.t. yj and subsequently w.r.t yk s.t. ⌈j/d⌉ 6= ⌈k/d⌉ we get,

0 =
n∑

i=1




∇φi(v(y)i:)
︸ ︷︷ ︸

1©

∂2v(y)i:
∂yj∂yk






T

ζi(ul,u0)

+








(

∇2φi(v(y)i:)×̄3
∂v(y)i:
∂yj

)

︸ ︷︷ ︸
2©

∂v(y)i:
∂yk








T

ζi(ul,u0)

Concatenating 1©, 2© into a single matrix in R
2d×m, the above

can be written as a single euclidean inner product in R
2nd.

(
n⊗

i=1

([
∇φi(si)

T

(

∇2φi(si) ×̄3
∂v(y)i:
∂yj

)T

]

ζi(ul,u0)

))

Γ(y) = 0

For Γ(y) =

(
n⊗

i=1

[
∂2v(y)i:
∂yj∂yk

∂v(y)i:
∂yk

])

∈ R
2nd the above equa-

tion holds true for 2nd distinct values of the auxiliary variable

ul. For invertible v, if we assume that
∂v(y)i:
∂yj

6= 0 then we can

apply the separability assm. which implies Γ(y) = 0. This

further implies that
∂v(y)i:
∂yk

= 0. Thus ∀i, ∂v(y)i:
∂yj

∨ ∂v(y)i:
∂yk

.

Since ⌈j/d⌉ 6= ⌈k/d⌉, yj and yk belong to distinct subspaces

of y = h(x). Hence the ith source given by v(y)i: cannot si-

multaneously be a function of two distinct subspaces of h(x).
Given the invertible function f(h(·)) with its full rank jacobian

we can recover the sources {si}
n
i=1 via the subspaces of h(x);

hi(x) = gi(sπi
) for an invertible function gi, permutation π.

Hilbert-Schmidt Independence Criterion (HSIC) [26]

The above theorem proves the existence of functions ψ∗, h∗

that can not only compute I(x,u) with arbitrary precision but

4For more details on the validity and necessity of similar results for
independent components (as opposed to subspaces) we refer the reader
to [17]. Also, for the sake of completion we show a proof sketch for the
identifiability of our ISA model. It’s an extension of the proof for the
univariate case [17, 18].

5Subscript i is dropped wherever it can be understood from context.



can also recover the original multi-dimensional sources. Albeit,

NCE algorithm relies on the assumption of infinite samples of

positive (x,u) and negative (x, ũ) pairs which is rarely true

in practice. Hence, along with the NCE objective which learns

r(x,u) that distinguishes between those pairs, we introduce

constraints imposed via the HSIC estimator that specifically ac-

counts for independence amongst the subspaces of h(x). This

acts as a strong inductive bias to learnψ∗, h∗ with finite observed

samples of (x,u). HSIC is a kernel based statistical test of in-

dependence for two multivariate random variables and is well

suited for high dimensional data as opposed to tests [27, 28, 29]

based on the power divergence family and characteristic func-

tions which are mainly meant for low-dimensional random vari-

ables [26]. Given D = {x(i),u(i)}Ni=1 with N samples, let the

set of features (h(x(i))) be denoted by {y(i) = h(x(i))}Ni=1.

For Rd dimensional subspaces j, k let yj ∈ Yj ⊆ R
d, yk ∈

Yk ⊆ R
d and Pjk denote a Borel probability measure over

Yj × Yk with N i.i.d samples Zjk := {(y
(i)
j ,y

(i)
k )}Ni=1

drawn from it. If F ,G are two Reproducible Kernel Hilbert

Spaces (RKHS) equipped with kernels6 kf , kg then the biased

empirical HSIC criterion Ĥjk = 1
N2 tr(Kf

(j)HKg
(k)H) and

Kf
(j)[p, q] = kf (y

(p)
j ,y

(q)
j ), Kg

(k)[p, q] = kg(y
(p)
k ,y

(q)
k ),

H = I− 1
N
11T ∈ R

N×N .

Algorithm (NCE-HSIC) We have shown that the NCE algo-

rithm can learn a regression function of the form r(x,u) (eqn. 3)

with optimal predictors ψ∗, h∗ such that the subspaces of h∗(x)
can recover the original sources si. Constrained by a finite

dataset we use the biased empirical HSIC estimator Ĥjk (lower

values imply more independence) as an additional objective

while optimizing for ψ∗, h∗. If the true and noisy samples for

the NCE algorithm are given by (x(l),u(l)) and (x(l),u(l′ 6=l))
respectively, then the final loss objective Lnh for NCE-HSIC is:

Lnh =
1

N

∑

l∈[N ]

r(x(l),u(l′ 6=l))− r(x(l),u(l)) + λ
∑

j,k

Ĥjk

3. Proposed Methodology

Speech representations that can explicitly capture factors of vari-

ation like phoneme identities or speaker traits while being invari-

ant to other factors like underlying pitch contour or background

noise [4, 5] have proven to be beneficial since they are less prone

to overfitting on spurious correlations in the data. Nevertheless,

disentanglement is hard to achieve in general due to the presence

of confounding variables [6]. In this section, we introduce our

approach APC-NCE-HSIC or ANH to learn representations with

independent subspaces that can theoretically capture distinct

acoustic/linguistic units relevant for downstream tasks like ASR.

Nonlinear ISA provides us with a simple yet principled

framework for learning speech representations in the presence

of auxiliary variables, which in the case of sequential data like

speech can be “time”. Learning unsupervised representations

can be posed as a problem of recovering from entangled samples

the non-stationary sources that are independent given the auxil-

iary variable (time frame sequence). The NCE-HSIC algorithm

can be used to identify original factors of variation via distinct

independent subspaces. In order to ensure that the independent

subspaces are not only mutually exclusive but are also having

a high MI with surface features like Mel-frequency cepstral co-

efficients (MFCC) or log Mel spectrograms (LMS) we build on

6kf : Yj × Yj → R, kg : Yk × Yk → R; for z, z′ ∈ Yj ,
kf (z, z

′) = 〈kf (z, ·), kf (z
′, ·)〉F and for z, z′ ∈ Yk , kg(z, z′) =

〈kg(z, ·), kg(z′, ·)〉G .

existing approaches based on predictive coding strategies [19, 3].

Although our algorithm can be seamlessly integrated into any of

these methods, in this work we show empirical results that high-

light the performance improvements gained by incorporating the

NCE-HSIC criterion into the APC model.

APC (Autoregressive Predictive Coding) [2] is a language

model based method to learn unsupervised speech representa-

tions. It uses an RNN to model temporal information within an

acoustic sequence comprising of 80-dimensional LMS features

{xi}
T
i=0. Given these features until a fixed time step t, the APC

model predicts the surface feature τ time steps ahead i.e. xt+τ .

If {p̂i}
T−τ
i=0 represents the sequence predicted by the RNN, then

the l1 loss used to train the model is given by:

Lapc(x) =

T−τ∑

i=0

− log p(xi+τ |x1 . . .xi) =

T−τ∑

i=0

|p̂i − xi+τ |

APC-NCE-HSIC or ANH is our proposed model where features
with independent subspaces are learnt through the NCE-HSIC

criterion which is applied to the hidden states of the RNN module

trained with the APC objective above. Specifically, the func-

tion h(x) is modeled using the RNN. The NCE-HSIC criterion

increases the correlation of the original sources with the sub-

spaces of h(x) or in this case the subspaces of the hidden states

of the RNN. If the RNN is parameterized by θ ∈ Θ then the

hidden state can be represented as the function h(θ,x). With

r(x,u) =
∑n
i=1 ψi(hi(θ,x),u) the final objective would be:

argmin
{ψi}

n
i=1

,θ

Lanh =
1

|D|

∑

x∈D

Lapc(x) + βLnh (5)

Auxiliary Variables7 The original LMS sequence of length T is

fragmented into time segments {sj}
⌈T/γ⌉
j=1 of length γ, and each

element xj,t in a given segment sj has its auxiliary variable uj,t
set to the value j, which is nothing but the corresponding seg-

ment’s position in the input sequence. The hidden states of the

RNN along with the generated auxiliary variables are passed to

the NCE module which first, generates positive (xt,ut) and nega-

tive (xt, ũt) pairs and then, learns ψ∗, θ∗ to distinguish between

them optimally. Upon the commencement of the unsupervised

learning phase, the hidden state for the tth frame with surface

features xt would comprise of n subspaces ({hi(θ
∗,xt)}

n
i=1)

that capture different factors of variation, independent for the

same value of the auxiliary variable ut. Thus the hidden states

can efficiently decouple factors that vary independently locally.

NCE is a powerful tool to predict MI and has been used in

recent works like CPC
8 [3] that rely on the NCE objective to dis-

tinguish pairs of context vectors from the same or different time

segments. This approach is similar to Time Contrastive Learning

TCL [7] which is an algorithm for nonlinear ICA. Although TCL

has only been shown to work for univariate cases and CPC fails

to model independent subspaces explicitly, they serve as a strong

motivation for our approach which addresses both concerns.

4. Experiments and Results

In this section, we empirically evaluate the performance of the

proposed ANH algorithm against two baseline models: APC and

CPC on two downstream tasks, (1) phoneme recognition (PR)

and (2) speaker verification (SV).

Datasets and Implementation LibriSpeech corpus [30]

was used for unsupervised training of the ANH model and other

7Auxiliary variables can be potentially given by other domains like
the frequency spectrum, but in this work we focus only on time.

8Contrastive Predictive Coding.



baselines. The datasets for PR and SV were picked from WSJ

[31] and TIMIT corpora respectively 9. For APC we use a multi-

layer unidirectional LSTM with residual connections exactly as

detailed in [2], with the exception of using 4 layers in the LSTM

(wherever mentioned explicitly) and for CPC modifications sug-

gested in [2] are made for a fair comparison. In the unsupervised

phase we train the RNN using the Lanh objective. The RNN

hidden states which are 512-dimensional are assumed to be a

collection of n = 4 contiguous subspaces each of which has

d = 128 dimensions. These 4 subspaces of the RNN parame-

terized by θ, represent the output {hi(θ,x)}
4
i=1 where x is the

LMS feature and hi(θ,x) is the ith subspace. The NCE module

also needs ψi(·, ·) which is implemented using 4-layer MLPs,

with ReLU activations, dropouts and batch-normalization. For

Lnh
10, five negative pairs are drawn for every positive pair. In

the supervised phase, once the ISA features (h(θ∗,x)) given

by the hidden states (final layer) of the trained RNN (θ∗) are

extracted, a supervised linear classifier is trained over features

from each frame for PR whereas an LDA model is trained over

features averaged over the entire sequence for SV.

Phoneme Recognition Table 1 highlights the performance

(Phone Error Rates (PER)) of our approach (ANH)11 against the

best variants of the CPC, APC models. The supervised baseline

(LMS+MLP) which involves training a 3-layer nonlinear classifier

over the LMS features fails to capture contextual information.

Even though CPC can learn contextual features, it only captures

information relevant for recognizing contexts that are τ steps

apart. Thus it may ignore signals that remain relatively stationary

for the entire utterance [2]. On the other hand APC directly

predicts surface features τ steps ahead and thus can model sub-

phonetic context useful in predicting the next phone. ANH with

τ = 5 has the least PER since the addition of the NCE-HSIC

objective enables the model to learn noise-free subspaces that

can capture relevant factors like formant movements. Finally,

adding layers to the RNN further improves the scores.

Table 1: Performance comparison (based on PER) on the

Phoneme Recognition task (WSJ corpus [31]).

Method PER

# lookahead-steps (τ ) 2 5 10

LMS+MLP (supervised) 42.5

CPC [3] 41.8 44.6 47.3

APC (3-layer) [2] 36.6 35.7 35.5

APC (4-layer) [2] 34.5 35.2 33.8

ANH (3-layer) (Ours) 33.2 31.3 34.7

ANH (4-layer) (Ours) 31.9 31.8 34.2

Ablations 2 5 10

APC + NCE 32.0 32.4 34.3

NCE-HSIC 49.8 48.5 54.6

NCE 49.4 53.2 55.9

Speaker Verification Results for SV are summarized in ta-

ble 2 which shows lower Equal Error Rates (EER) achieved by

ANH as compared to the baselines. It has been shown that in

deep language models, lower layers model local syntax while the

higher ones capture semantic content [2, 32]. We make similar

observations since the EER values increase (for all τ ) when the

9For brevity we skip the details of the dataset and refer the reader to
[2] from where we borrowed the dataset splits and input LMS features.

10The optimal β in Lanh & λ in Lnh were found to be 0.1 and 0.02.
11Unless specified all ANH models are trained with γ = 30.

ANH model has more than 3 layers. Lowering τ reduced EER in

most cases and had minimal impact on the independence (Ĥjk).

Table 2: Performance (based on EER) on the speaker verification

task (TIMIT corpus). (∗choosing different layers [2])

Method EER

# lookahead-steps (τ ) 2 3 5 10

CPC features [3] 5.62 5.29 5.42 6.01

APC (3-layer)-1∗ [2] 3.82 3.67 3.88 4.01

APC (3-layer)-2∗ [2] 3.41 3.72 3.92 4.04

ANH (2-layer) (Ours) 3.53 3.35 3.91 4.12

ANH (3-layer) (Ours) 3.45 3.12 3.45 3.67

Ablations NCE-HSIC model when trained without the Lapc
loss rendered independent subspaces but performed poorly on

PR since there is no reason to believe why such subspaces would

retain phonetic information. Adding the APC objective aids the

model (ANH) to learn acoustic features while disentangling the

factors across subspaces (table 1). Removing the HSIC criterion

increased the PER and the model training also took (×2) longer to

converge. This reinforces our hypothesis that the HSIC criterion

provides a good inductive bias for a more generalizable model.

Independence In order to measure the independence of the

four 128-dimensional subspaces of the RNN states, absolute val-

ues of the Pearson’s Correlation were computed on the validation

splits for PR,SV. When averaged over all possible pairs, they

were found to be 0.21, 0.19 on PR,SV respectively when both

NCE and HSIC objectives were considered in Lnh. With λ = 0
these values were 0.29 and 0.33 but were still significantly lower

as compared to the case of APC which had average absolute cor-

relation values of 0.81 and 0.77 on PR and SV respectively.

Time Segment Length (γ) We show the impact of the time

segment length γ on the phoneme classification task in table 3.

As we increase γ the total number of segments (and auxiliary

variables) reduce in an utterance. Theoretically, 2nd distinct

auxiliary variables are needed to identify n sources each of

which is d-dimensional (sec. 2). Hence increasing γ to values

greater than 50 leads to higher (> 40) PERs. Additionally, we

observe that when the RNN is trained with higher values of τ for

the APC objective PER drops by using wider segments. This may

indicate that the distribution of the underlying factors remain

stationary for longer periods at higher values of τ .

Table 3: Comparing different values of (γ) for ANH (3-layer)

model on the phoneme classification task.

Segment size γ PER

# lookahead-steps (τ ) 2 5 10

γ = 10 39.4 38.5 36.8

γ = 20 38.1 35.3 37.5

γ = 30 33.2 31.3 34.7

γ = 50 34.0 32.0 33.5

5. Conclusion

We extend nonlinear ICA and show how the proposed algorithm

to compute MI between the observed and auxiliary variables can

provably identify independent subspaces under certain regularity

conditions. We also use the algorithm to learn unsupervised

speech representations with disentangled subspaces when in-

tegrated with existing approaches like APC. Future work may

involve a close analysis of the features in these subspaces to

understand which orthogonal components are represented by

each and how they can prove to be useful for downstream tasks.
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