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Abstract
Convolutional neural networks have been successfully applied
to a variety of audio signal processing tasks including sound
source separation, speech recognition and acoustic scene under-
standing. Since many pitched sounds have a harmonic structure,
an operation, called harmonic convolution, has been proposed
to take advantages of the structure appearing in the audio sig-
nals. However, the computational cost involved is higher than
that of normal convolution. This paper proposes a faster calcu-
lation method of harmonic convolution called Harmonic Low-
ering. The method unrolls the input data to a redundant layout
so that the normal convolution operation can be applied. The
analysis of the runtimes and the number of multiplication oper-
ations show that the proposed method accelerates the harmonic
convolution 2 to 7 times faster than the conventional method
under realistic parameter settings, while no approximation is
introduced.
Index Terms: Harmonic Lowering, Convolutional Neural Net-
work, Lowering, Harmonic Structure

1. Introduction
Inspired by the success in the image processing fields, convo-
lutional neural networks (CNNs) [1] have been introduced in
a variety of audio signal processing. For example, U-Net [2]
has been successfully applied to sound source separation [3]. In
addition to the two-dimensional one, one-dimensional convolu-
tion has also been proposed for the analysis of raw waveforms
[4].

In the case of images, it is considered that small convolu-
tional kernels can extract features from images because images
usually have local continuity. However, sound spectrograms
show little local continuity along the frequency axis. Regard-
ing the relationships of components along the frequency axis, it
is well known that a harmonic structure is observed in the case
of pitched audio signals.

To incorporate the harmonic structure to CNN-based audio
processing, a method called harmonic convolution [5] has been
proposed, where harmonics are convoluted with a kernel. It
has been reported that it achieves a higher performance in au-
dio restoration and sound source separation tasks than with the
normal convolution.

However, a major problem with harmonic convolution is its
low speed. With a typical parameter setting, harmonic convolu-
tion can be about 10 times slower than normal convolution due
to the memory access not always being continuous. Even in
normal CNNs, convolution computation often becomes a bot-
tleneck, and therefore, slower convolution could be a more dif-
ficult problem when considering the applications.

In this paper, we propose two efficient computational meth-
ods of harmonic convolution for a linear and logarithmic fre-

quency axis, respectively. In both cases, no approximation is in-
troduced, and therefore, the same calculation result as the origi-
nal one is guaranteed. The analysis of the runtime and the num-
ber of multiplication operations show that the proposed method
accelerates the harmonic convolution 2 to 7 times faster than the
conventional method under realistic parameter settings.

Our paper is organized as follows. Section 2 introduces har-
monic convolution. Section 3 introduces related works. Section
4 describes our proposed method. Section 5 shows the experi-
mental results. Section 6 concludes this paper.

2. Harmonic Convolution
We introduce the definition of harmonic convolution and its im-
plementation [5].

2.1. Definition

When a waveform signal x[t] is given, the power of discrete
short-time Fourier transformation X[ω, τ ] is given by Eq. (1).

X[ω, τ ] = ∥STFT (x[t])∥2 (1)

Then, harmonic convolution of X is defined by Eq. (2).

Yn[ω̂, τ̂ ] =

Kf∑
k=1

Kt∑
τ=1

X

[
kω̂

n
, τ̂ − τ

]
K[k, τ ] (2)

Y [ω̂, τ̂ ] =

N∑
n=1

wnYn[ω̂, τ̂ ], (3)

where Kf and Kt are the kernel size along the frequency and
time axes, respectively, n is an anchor with which the convolu-
tion is executed treating ω̂/n as the base frequency. Eq. (3) is
called anchor mixing because it is mixing the results of various
anchors.

2.2. Problem in Harmonic Convolution

Harmonic convolution requires to access the spectrogram data
located at frequency kω̂/n. This is the core part of harmonic
convolution, but at the same time, it can become a bottleneck for
fast calculation. This is primarily because accessing distant data
is costly. Data interpolation needed for the case when the fre-
quency index becomes noninteger also requires additional com-
putation.

2.3. Implementation in previous work

In [5], a type of approximation is introduced to harmonic con-
volution for computational efficiency, as in Eq. (4). This de-
composes harmonic convolution to a combination of normal



convolution on the time axis and the so-called deformable con-
volution along the frequency axis. Then, the anchor mixing is
implemented as a pointwise convolution.

K[k, τ ] ≈ Kf [k]Kt[τ ] (4)

However, we consider it could be difficult for such a decom-
posed kernel to capture the features of acoustic signal compo-
nents whose frequencies vary over time.

3. Related Work
3.1. Deep Learning with Harmonic Structures

The harmonic structure appearing in a sound spectrogram of
pitched sounds has been utilized in a variety of audio signal pro-
cessing tasks for a long time [6]. However, when CNNs are used
on the spectrograms, a convolutional kernel has usually been too
small to cover harmonic structures, which have not been fully
utilized. Recently, a harmonic convolution method was pro-
posed [5]. Preprocessing methods using a learnable filter-bank
[7] and F0 estimation and harmonic structure rendering [8] have
also been proposed.

3.2. Deformable Convolution

Deformable convolution is a generalized convolution method
proposed in [9]. It enables to change reference data with given
offsets ∆x,∆y as in Eq. (5). The original motivation of this
convolution method was to deal with variations of scale, pose,
viewpoint and so on, of an input image with learnable offsets. In
this method, if accessing data with a noninteger index is needed,
2-dimensional interpolation is performed.

Y [h,w] =
∑
x

∑
y

(X[h− (x+∆x(h, x)), w − (y +∆y(w, y))]K[x, y]) (5)

In Section 5, we compare the runtime of the proposed method
with that of an implementation based on deformable convolu-
tion.

3.3. Separable Convolution

Separable convolution is a method to reduce the number of pa-
rameters in convolution by approximating the kernel as in Eq.
(6). It is reported that under a certain condition separable con-
volution can perform almost the same as normal convolution
[10, 11]. It is also used in machine translation [12] and with
mobile devices [13].

K[cout, cin, h, w] ≈ Kp[cout, cin]Kd[cin, h, w] (6)

As introduced in 2.3, the authors in [5] implemented harmonic
convolution by introducing a type of separable convolution.

3.4. Efficient Calculation for Convolutional Neural Net-
works

When learning CNNs, the computational cost for convolution
tends to be a bottleneck. Therefore, a number of methods have
been proposed for its efficient calculation [14].

Generally, the approaches are roughly classified into archi-
tectural, algorithmic, and implementational ones. Architectural
approaches involve the use of specific computational architec-
ture such as cache mechanisms. Algorithmic approaches often
reduce the problem by taking advantage of the common parts in

the problem itself, such as in fast Fourier transform (FFT). For
example, the use of FFT to convert convolutional operations to
product operations [15, 16, 17] has been proposed, although
the overhead of FFT cannot be ignored with small kernels, Im-
plementational approaches aim at faster execution at the risk of
increased memory usage. For example, loop unrolling has been
a common computational technique up to now [23, 24, 25].
Another commonly-used method is called lowering, or Im2Col
[18, 19]. The lowering enables fast computations on GPUs by
transforming input data into a matrix so that convolution is exe-
cutable in a highly optimized matrix multiplication routine. Ef-
ficient lowering methods with a reduced amount of multiplica-
tions [20, 21] and memory usage [22] have also been proposed.

We focus on an implementational approach in this paper.
Inspired by the lowering, the proposed method transforms input
data so that harmonic convolution is executable in the highly
optimized normal convolution routine.

4. Method
In this section, we detail our proposed method called Har-
monic Lowering to solve the problems described in 2.2.
The implementation is available at https://github.com/
taketakeseijin/HarmonicLowering .

4.1. Harmonic Lowering

The following equations are derived from Eq. (2).

X ′
n [k, ω̂, τ̂ ] = X

[
kω̂

n
, τ̂

]
(7)

K′[k, 1, τ ] = K[k, τ ] (8)

Yn[ω̂, τ̂ ] =

Kf∑
k=1

1∑
ω=1

Kt∑
τ=1

X ′
n [k, ω̂, τ̂ − τ ]K′[k, ω, τ ] (9)

In Eq. (9), harmonic convolution is performed by the normal
convolution of X ′

n with kernel K′. This is an essential point in
the proposed method, as illustrated in Fig. 1.

First, by lowering X to X ′
n as Eq. (7), harmonic

data become accessible continuously. For example, accessing
X ′

n[·, f, ·] is equivalent to accessing ∀k ∈ K X[kf/n, ·]. In
this part, X is shrank k/n times on the frequency axis and set
to X ′

n[k]. Second, K is transformed to K′ as Eq. (8) to convo-
lute correctly in Eq. (9). Third, X ′

n is convoluted with kernel
K′ as Eq. (9). Here, the kernel size is 1 along the frequency
axis and Kt along the time axis.

We call a sequence of Eqs. (7), (8), and (9) Harmonic Low-
ering. When setting shrank X to Xn, shrank X is zero padded
for missing data of high frequencies, or trimmed to be of the
constant size. Shrinking X is done by affine interpolation, but
when n = 1, shrinking can be performed by striding. As an im-
plementation tip, convolution for X ′ is quickly performed by
treating the first axis as the input channel.

4.2. Logarithmic Harmonic Lowering

The Harmonic Lowering can be done on a logarithmic fre-
quency scale, ignoring the DC components of spectrograms.
We call it Logarithmic Harmonic Lowering, which is even sim-
pler and faster than Harmonic Lowering on the linear frequency
scale.

Following Eqs. (10), (11), and (12), harmonic convolution
on a logarithmic frequency scale can be calculated, as illustrated
in Fig. 2. Unlike Harmonic Lowering, Logarithmic Harmonic



Figure 1: Harmonic Lowering (3×3, n=1). It consists of shrink-
ing (expanding) and unrolling by X ′

n[k] = X
[
kω̂
n
, τ̂

]
for k =

1, · · · ,Kf . The zero-padding and trimming are applied when
needed. The harmonic elements are accessible by X ′

n[·, f, ·] .
For example, reference to X[1f0, ·], X[2f0, ·], X[3f0, ·] is done
by accessing to X ′

n[·, f0, ·].

Lowering only requires shifting log k/n on the frequency axis
when lowering X , which also reduces the amount of computa-
tion.

X ′
n [k, log ω̂, τ̂ ] = X

[
log

kω̂

n
, τ̂

]
= X [log k/n+ log ω̂, τ̂ ] (10)

K′[k, 1, τ ] = K[k, τ ] (11)

Yn[log ω̂, τ̂ ] =

Kf∑
k=1

1∑
ω=1

Kt∑
τ=1

X ′
n [k, log ω̂, τ̂ − τ ]K′[k, ω, τ ]

(12)

4.3. Total Sums and Multiplications

For analysis purposes, here we enumerate the total number of
sums and multiplications needed in computing one element of
Yn[ω̂, τ̂ ].

4.3.1. Bilinear Interpolation

Deformable convolution computes bilinear interpolation for
each X[kω̂/n, τ̂ − τ ]. Bilinear interpolation equations are be-
low.

f =
kω̂

n
, t = τ̂ − τ,

ffloor = floor(f), fceil = ffloor + 1,

tfloor = floor(t), tceil = tfloor + 1,

wfceil = f − ffloor, wffloor = 1− wfceil,

wtceil = f − tfloor, wtfloor = 1− wtceil,

X[f, t] = wffloorwtfloorX[ffloor, tfloor]

+ wffloorwtceilX[ffloor, tceil]

+ wfceilwtfloorX[fceil, tfloor]

+ wfceilwtfceilX[fceil, tceil].

Ignoring the floor function and computing f, t, bilinear interpo-
lation needs 8 multiplications and 9 sums. This interpolation is
executed kτ times, convolution only requires kτ sums and kτ
multiplications, and the computing index requires k sums and τ
multiplications. The total numbers are as follows:

• Total multiplications: kτ(1 + 8) + k,

• Total sums: kτ(1 + 9) + τ .

Figure 2: Logarithmic Harmonic Lowering (3× 3, n = 1).
It consists of shifting and unrolling operations by X ′

n[k] =
X [log k/n+ log ω̂, τ̂ ] for k = 1, · · · ,Kf . The zero-padding
and trimming are applied when needed. In the above illustra-
tion, the grey part of X ′

n means the trimmed part. The harmonic
elements are accessible by X ′

n[·, log f, ·]. For example, refer-
ence to X[log 1f0, ·], X[log 2f0, ·], X[log 3f0, ·] is done by ac-
cessing X ′

n[·, log f0, ·].

4.3.2. Affine Interpolation

Unless n = 1, Harmonic Lowering involves linear interpolation
for each X ′

n[k, ω̂, τ̂ − τ ]. We can assume affine transforma-
tion regarding the frequency axis, and therefore, interpolation
weights are predictable. The interpolation is done by the equa-
tions below.

f =
kω̂

n
,

ffloor = floor(f), fceil = ffloor + 1,

wceil = f − ffloor, wfloor = 1− wceil,

X[f ] = wfloorX[ffloor] + wceilX[fceil].

Here, wceil, wfloor are predictable and do not need to be com-
puted, and therefore, convolution requires 2 multiplications and
1 sum. The total numbers are as follows:

• Total multiplications: kτ (1 + 2) + k,

• Total sums: kτ (1 + 1) + τ .

5. Experiments
5.1. Exp. 1: Kernel size and anchor

To evaluate the acceleration performance, we measured the run-
time and the maximum amount of memory usage of harmonic
convolution, changing the kernel sizes and the anchor. Through-
out this paper, the runtimes were measured 100 times and then
averaged, by using random input and gradient output for each
time. We compared the following three methods.

1. Deformable convolution

2. Harmonic Lowering

3. Logarithmic Harmonic Lowering

We used a PC with one Nvidia GeForce GTX 1080Ti GPU for
the measurement. Experimental parameters are listed in Table
1. The batch size was 16, and the dilation, stride and group
parameters were all set to 1.

The results are summarized in Fig. 3. In each bar, the bot-
tom part shows the runtime for the forward calculation, the up-
per part for backward calculation. The colored dots indicate the
maximum memory usage. For reference, we also plots those of
the normal convolution. The results showed four points of inter-
est. First, the proposed method was faster than the conventional



Table 1: Experimental settings. The parameters
n,Cin, Cout, S,K, P are anchor, input channel size, out-
put channel size, input spectrogram size, kernel size, and
padding size, respectively.

n Cin Cout S K P
Setting1 1 16 32 (256,256) (7,7) (3,3)
Setting2 1 16 32 (256,256) (5,5) (2,2)
Setting3 1 16 32 (256,256) (3,3) (1,1)
Setting1a 7 16 32 (256,256) (7,7) (3,3)
Setting2a 5 16 32 (256,256) (5,5) (2,2)
Setting3a 3 16 32 (256,256) (3,3) (1,1)

Figure 3: Averaged runtime for harmonic convolution (1). The
bottom, middle and top parts of each bar show the runtimes for
forward, backward, and other calculations, respectively.

method in all cases, and it was about 7 times faster in some
cases. Second, when the anchor parameter was greater than 1,
the runtime slightly increased. Third, as the kernel size became
greater, the ratio of the proposed method’s runtime to that of
the normal convolution became smaller. Fourth, in all settings,
the proposed methods are more efficient than the conventional
in the maximum memory usage.

5.2. Exp. 2: Input spectrogram size

We tested how the runtime and the memory usage change when
the input spectrogram size was changed. Experimental param-
eters are listed in Table 2. The remaining setups were the same
as those in 5.1.

The results are summarized in Fig. 4, and showed four
points of interest. First, in all settings, the proposed method
was faster than the conventional method, and the acceleration
was about 2 to 7 times, depending on the settings. Second,
when the input size became greater, the ratio of the proposed
method’s runtime to that of the normal convolution became
smaller. Third, in setting5, the conventional method was the
slowest among the tested settings. Fourth, in all settings, the
proposed methods are more efficient than the conventional in
the maximum memory usage.

5.3. Discussion

When comparing setting4 with setting5, the channel size of set-
ting4 is 1 and its data access cost is relatively small. In addition,
the deformable convolution routine we used is highly optimized
while our implementation of the proposed method is not. Thus,
there is room for improvement.

For a realistic example, let us assume building a model con-
sisting of setting4∼9 and the pooling layers. Then the estimated
runtime of normal convolution is 0.0089 s, by simply adding
all the runtimes of setting4∼9, whereas that of the conventional
method and Harmonic Lowering are 0.0384 s and 0.0152 s,
respectively. That is, the conventional method takes over four
times more time compared with the normal model, but with the

Table 2: Experimental settings. The parameters
n,Cin, Cout, S,K, P are anchor, input channel size, out-
put channel size, input spectrogram size, kernel size, and
padding size, respectively.

n Cin Cout S K P
Setting4 1 1 16 (512,512) (3,3) (1,1)
Setting5 1 16 32 (256,256) (3,3) (1,1)
Setting6 1 32 64 (128,128) (3,3) (1,1)
Setting7 1 64 128 (64,64) (3,3) (1,1)
Setting8 1 128 256 (32,32) (3,3) (1,1)
Setting9 1 256 512 (16,16) (3,3) (1,1)

Figure 4: Averaged runtime for harmonic convolution (2). The
bottom, middle and top parts of each bar show the runtimes for
forward, backward, and other calculations, respectively.

proposed method, the required time is less than two times com-
pared with the normal model.

In 5.1, we observed that the runtime for each method
changes with the kernel size. To further analyze it, Fig. 5 shows
the runtimes for the forward calculation of deformable convo-
lution and Harmonic Lowering, overlapped with the number of
multiplications studied in 4.3. It is shown that the number of
multiplications corresponds well to the runtime, which implies
that the multiplication may account for a major portion of the
computational time.

Figure 5: Runtime and the number of multiplications for the
forward calculation required for one element of Yn[ω̂, τ̂ ]

6. Conclusions
In this paper, we proposed a fast calculation method of har-
monic convolution, called Harmonic Lowering, while maintain-
ing the exactly same calculation results. The method is based on
the mapping of the input data to a redundant layout so that a nor-
mal convolution operation with continuous data access can be
applied. The measurement and analysis of the runtimes and the
maximum memory usage revealed that the proposed method ac-
celerates the harmonic convolution 2 to 7 times faster and more
memory-efficient than the conventional method, under various,
realistic parameter settings.
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