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Abstract
Spoken language transcripts generated from Automatic speech
recognition (ASR) often contain a large portion of disfluency
and lack punctuation symbols. Punctuation restoration and dis-
fluency removal of the transcripts can facilitate downstream
tasks such as machine translation, information extraction and
syntactic analysis [1]. Various studies have shown the influence
between these two tasks and thus performed modeling based
on a multi-task learning (MTL) framework [2, 3], which learns
general representations in the shared layers and separate repre-
sentations in the task-specific layers. However, task dependen-
cies are normally ignored in the task-specific layers. To model
the dependencies of tasks, we propose an attention-based struc-
ture in the task-specific layers of the MTL framework incorpo-
rating the pretrained BERT (a state-of-art NLP-related model)
[4]. Experimental results based on English IWSLT dataset and
the Switchboard dataset show the proposed architecture outper-
forms the separate modeling methods as well as the traditional
MTL methods.
Index Terms: Punctuation prediction, disfluency prediction,
joint prediction, MTL, attention

1. Introduction
Speech transcripts from most ASR systems normally lack punc-
tuation symbols and contain disfluencies. Due to these distinc-
tive characteristics compared to the written language, it’s es-
sential to implement punctuation restoration and disfluency re-
moval in spoken language processing [3].

Punctuation prediction is used for restoring punctuation
symbols such as commas, periods and question marks of the
unsegmented texts. Many studies have treated it as a sequence
labeling task. Traditional methods based on conditional ran-
dom fields (CRF) combine various kinds of textual features to
predict punctuation marks [5, 6]. With the development of deep
learning, approaches based on neural networks outperformed
traditional methods by a wide margin. A deep neural network
combined with CRF took prosodic features as input and gener-
ated sentence boundaries [7]. The convolution neural network
(CNN) was developed to predict punctuation marks [8]. Other
neural networks such as the recurrent neural network (RNN)
have been widely used in the punctuation prediction task. The
work in [9] presented a two-stage method based on a long short-
term memory network (LSTM). A bidirectional RNN combined
with the attention mechanism (T-BRNN) was proposed to re-
store punctuation and outperformed previous work [10]. A bidi-
rectional LSTM with a CRF layer (BLSTM-CRF) and an en-
semble model were proposed to improve the performance of the
punctuation prediction [11]. Some other studies treated punctu-
ation prediction as a machine translation problem, where the
source is the unpunctuated text and the target is the text with
punctuation. An RNN encoder-decoder structure with an atten-
tion layer was developed for punctuation restoration [12]. The

work in [13] explored a self-attention based model to predict
punctuation marks by combining both text and speech features
and obtain state-of-the-art results in punctuation prediction.

Usually, disfluencies can be classified into two main types:
filler words and edit words. The filler words include filled
pauses (e.g., ’uh’, ’um’) and discourse marks (e.g., ’you know’,
’i mean’). The edit words usually mean words that are spo-
ken wrongly and corrected by the speaker. Many approaches
have been proposed for disfluency prediction. Methods based
on CRF were employed to detect disfluencies in spoken lan-
guage transcripts [14, 15]. A BLSTM neural network was in-
troduced for disfluency detection [16]. A convolution neural
network with an auto-correlation operator was developed for
disfluency detection [17]. A semi-supervised approach based
on self-attention mechanism was proposed to predict disflu-
ency [18]. The work in [19] adapted neural machine transla-
tion model (NMT) on the basis of transformer [20] and out-
performed previous works. Recently, the BLSTM-based model
combining residual BLSTM blocks, self-attention, and a noisy
training approach was introduced in [21] and achieved a strong
performance.

These models focus on improving either the punctuation
prediction accuracy or the disfluency detection accuracy. It has
been found that there is mutual influence between punctuation
restoration and disfluency prediction in [22]. It proposed three
combined methods based on the CRF model and found these
methods outperformed the isolated prediction method by 0.5%-
1.5% based on F1-measure. A two-stage approach was pro-
posed in [23] to do sentence segmentation followed by simple-
disfluency removal first and then do complex-disfluency re-
moval. With the development of neural network, the methods
based on an MTL framework, which learns general feature rep-
resentations for all the tasks by parameter sharing and task-
specific representations in the task-specific layers, were pro-
posed for joint modeling of two tasks [2, 3]. However, the de-
pendencies of these two tasks were ignored in the task-specific
layers.

Recently, attention mechanism has been used in various
problems like image captioning [24], neural machine translation
[20] and automatic speech recognition [25]. Attention mecha-
nism can have access to the global sequence features and place
more attention on the relevant features. The contextual influ-
ence of punctuation prediction (disfluency detection) on disflu-
ency detection (punctuation prediction) can be local or global.
In this paper, we propose an attention-based structure in the
task-specific layers to model the dependencies of disfluency de-
tection and punctuation prediction based on an MTL frame-
work. As BERT has advanced the state-of-the-art in various
NLP tasks [4], we model the combination of punctuation pre-
diction and disfluency detection based on this particular net-
work. In section 2, we will introduce the proposed joint meth-
ods. The experiments are conducted in section 3. We will draw
the conclusions and future suggestions in section 4.



2. Proposed method
2.1. Modeling

In this paper, we consider punctuation prediction and disfluency
detection as sequence labeling tasks. Our baseline is based on
BERT. The architecture of BERT is a multi-layer bidirectional
Transformer encoder based on the original Transformer model
[26]. The input of BERT is a sequence of word pieces (sub-
word units) [27] in the sentence x = (x1, x2...xn) and the out-
put is H = (h1, h2...hn). Given the final output H of BERT,
a sequence of results p = (p1, p2...pn) where pi represents
punctuation (e.g., comma (C), period (P), question (Q), blank
mark (B)) or d = (d1, d2...dn) where di represents disfluency
results (e.g., disfluency, fluency) is predicted based on a fully
connected layer (FC) defined in Eq. (1). The results of punctu-
ation prediction and disfluency detection can be achieved as Eq.
(1):

pi = softmax(w × hi + b) (1)

where w and b are the trainable weights and biases in the net-
work.

Traditional methods based on the MTL framework share
general representations H and learns specific representations in
the task-specific layers. Thus, prediction of punctuation and
disfluency based on the MTL framework can be formulated
as joint probability of punctuation and disfluency, making the
hypothesis that two tasks are independent of each other condi-
tioned on h. Specifically,

P (p, d|h) = P (p|h)× P (d|h) (2)

Normally, P (p|h) and P (d|h) are modeled in separate
task-specific FC layers as in Eq. (1).

Besides general features shared by two tasks, there is mu-
tual influence between punctuation and disfluency results. For
example, ’I like’ might be predicted as repetition disfluency in
the sentence ’I like football I like basketball’, while it might not
in the sentence ’I like football. I like basketball’. Assuming the
two tasks are not independent of each other, joint probability
of punctuation and disfluency can be formulated by conditional
probability. Specifically, predicting punctuation conditioned on
disfluency results is shown in Eq. (3) and predicting disfluency
conditioned on punctuation results is defined in Eq. (4):

P (p, d|h) = P (p|d, h)× P (d|h) (3)

P (p, d|h) = P (d|p, h)× P (p|h) (4)

That is, instead of modeling conditional independent
P (p|h) and P (d|h) as in Eq. (2), we will model P (p|d, h)
and P (d|h) or P (d|p, h) and P (p|h) directly using particular
network structures. The traditional MTL method is shown in
Figure 1 and the proposed MTL considering task dependencies
is displayed in Figure 2.

The most common principle by which a model is fitted to
the data is by the maximum likelihood (ML) principle [28], the
likelihood can be represented as Eq. (5):

Likelihood =

n∏
i=0

c∏
k=1

P (p, d|h)y(p,d)

=

n∏
i=0

c∏
k=1

P (p|h)y(p)P (d|p, h)y(d)

=

n∏
i=0

c∏
k=1

P (p|d, h)y(p)P (d|h)y(d)

(5)
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Figure 1: Traditional MTL
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Figure 2: Proposed MTL

where c represents the number of categories of combined punc-
tuation and disfluency and n represents the total number of sam-
ples. y is the ground truth of punctuation or disfluency and p is
the probability derived from the Eq. (1).

The maximization of the likelihood can be formulated as
the minimization of negative log likelihood. The final loss func-
tion for joint optimization of these two tasks can be defined in
Eq. (6):

Ltotal = −
n∑

i=1

y(p, d)× logP (p, d|h)

= −
n∑

i=1

y(p)× logP (p|h)−
n∑

i=1

y(d)× logP (d|p, h)

= −
n∑

i=1

y(p)× logP (p|d, h)−
n∑

i=1

y(d)× logP (d|h)

= Lpunctuation + Ldisfluency

(6)
where Lpunctuation and Ldisfluency are the classification losses
of punctuation and disfluency prediction. Usually, a value rang-
ing from 0 to 1 is set to balance the weight between two tasks
for fast convergence of the algorithm.

2.2. Network architecture

The joint probability of two tasks with dependencies mentioned
in the previous section can be implemented by two methods:
(1) predicting disfluency based on punctuation results; (2) pre-
dicting punctuation based on disfluency results. The dependen-



cies of two tasks are implemented by an attention based struc-
ture in the task-specific layers shown in Figure 3. The atten-
tion function can be described as mapping a query and a set
of key-value pairs to an output, which was proposed in neu-
ral machine translation [29]. Specifically, to predict disfluency
based on punctuation results, the punctuation probability results
p = (p1, p2...pn) and disfluency results d = (d1, d2...dn) are
achieved from two separate FC layers. The transformed pre-
dicted punctuation results can be treated as the keys and values,
and each disfluency result dj can be taken as the query. The
final punctuation feature fj can be achieved by the attention
mechanism defined in Eq. (7):

fj =
∑
i∈n

αipci (7)

where αi is the attention weight defined in Eq. (8) and n is the
number of samples (words) in a sentence.

αi =
exp(pcTi dj)∑
k∈n exp(pcTk dj)

(8)

where pci are transformed predicted probability of punctuation
shown in Eq. (9):

pci = tanh(wpc ∗ pi + bpc) (9)

The punctuation features fj and dj are concatenated to-
gether followed by an FC layer to predict final disfluency re-
sults. Predicting punctuation based on disfluency results can be
implemented similarly. The final disfluency results are shown
in Eq. (10):

dj(final) = softmax(wc × [fj , dj ] + bc) (10)

where [fj , dj ] are the operation of concatenation of fj and dj .
wc and bc are the trainable weights and bias for feature concate-
nation which are randomly initialized in the network.
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Figure 3: Proposed structure based on attention

3. Experiments
3.1. Corpus

We assess the proposed method for punctuation prediction and
disfluency detection on the Switchboard corpus of conversa-
tional speech [30] and English IWSLT dataset. Following pre-
vious work in [16, 17], we split the Switchboard corpus into
training, dev and test set as follows: training data consists of
all sw[23].dff files, dev training consists of all sw4[5-9].dff
files, and test data consists of all sw4[0-1].dff files. In English
IWSLT dataset, there are three datasets: training set, develop-
ment set and test set. The training set and development set are
from the training data of IWSLT2012 machine translation track.
The training set contains about 2.1M words, 144K sentences.
The development set has about 296K words, 21K sentences.
There are two test sets: reference and ASR, which are from the
IWSLT2011. The test set contains about 13K words, 860 sen-
tences. We use these training, development and test sets to train
and test our models as previous work did [10, 11, 13].

3.2. Baseline results

We obtain the isolated baselines for punctuation and disfluency
prediction based on two separate BERT models. For compar-
ing different combination methods, we present two baselines
for punctuation which are based on the IWSLT dataset and the
Switchboard dataset separately. The disfluency detection base-
line is based on the Switchboard dataset. As the utterances of
each speaker have been segmented into short sentences in the
Switchboard dataset, we join utterances into long sentences for
punctuation evaluation. We use the English uncased BERT-
Base model, which has 12 layers, 768 hidden states, and 12
heads. The BERT fine-tuned model is trained with epochs rang-
ing from 5 to 8. All models are evaluated in terms of punctua-
tion and disfluency precision, recall and F1-score.

From the results of the punctuation prediction shown in Ta-
ble 1, we can see that the BERT fine-tuned baseline used in our
experiments achieved the state-of-art results in most testsets.
The performance of disfluency detection trained on the Switch-
board dataset is evaluated from two perspectives: (1) short sen-
tences; (2) long sentences joining from short utterances. The
results of disfluency detection in Table 3 show the BERT fine-
tuned baseline outperforms the previous work by 2% in F1-
score. The performance based on assembled long sentences is
inferior to that on short sentences by 9% in F1-measure, indi-
cating potential influence of sentence segmentation.

3.3. Joint approach

We implement combination of the punctuation prediction and
disfluency detection based on two strategies: (1) combining the
punctuation task based the IWSLT dataset and the disfluency
task on the Switchboard dataset (SEP); (2) combining punctua-
tion and disfluency tasks both based on the Switchboard dataset
(COMBINE (SWBD)). We compare results of different com-
binations based on the traditional MTL method (feature shar-
ing (FS)) and our proposed approaches, including predicting
punctuation after disfluency (DP) and predicting disfluency af-
ter punctuation (PD).

From the results shown in Table 2, we can see that there is
1% improvement on average for punctuation of IWSLT REF
dataset in SEP and nearly 1% improvement for the Switch-
board dataset in COMBINE (SWBD), while there is little im-
provement for the traditional MTL method (FS), indicating su-
periority of modeling dependencies of two tasks based on the



Table 1: Punctuation comparison results of the baseline

TRAIN TEST MODEL COMMA PERIOD QUESTION
P R F1 P R F1 P R F1

IWSLT
ASR

T-BRNN-PRE [10] 59.6 42.9 49.9 70.7 72 71.4 60.7 48.6 54.0
Teacher-Ensemble [11] 60.6 58.3 59.4 71.7 72.9 72.3 66.2 55.8 60.6
Self-attention word [13] 61.5 57.2 59.3 72.1 73.0 72.5 67.9 60.6 64.0

BERT finetune 54.2 63.1 58.3 75.3 76.2 75.7 57.6 63.0 61.7

REF

T-BRNN-PRE [10] 65.5 47.1 54.8 73.3 72.5 72.9 70.7 63.0 66.7
Teacher-Ensemble [11] 66.2 59.9 62.9 75.1 73.7 74.4 72.3 63.8 67.8
Self-attention word [13] 64.9 58.7 61.6 79.1 74.6 76.8 75.4 64.9 69.8

BERT finetune 68.2 68.8 68.5 81.2 81.3 81.2 81.2 81.3 82.1

SWBD SWBD TEST Recurrent network [2] 80.0 76.1 78.0 78.2 64.2 70.5 78.0 58.2 66.7
BERT finetune 80.2 85.0 82.5 91.2 77.1 83.6 80.2 65.8 72.3

Table 2: Punctuation results of combinations

COMBINE (SEP) COMBINE (SWBD)
F1 (C) F1 (P) F1 (Q) F1 (C) F1 (P) F1 (Q)

IWSLT ASR(BASE) 58.3 75.7 61.7 39.2 69.8 45.7
IWSLT ASR(FS) 58.5 75.5 61.2 38.9 70.1 44.1

IWSLTASR(DP) 58.1 75.3 61.5 43.2 71.2 47.3
IWSLTASR(PD) 58.5 75.8 61.9 41.3 71.5 51.2

IWSLT REF(BASE) 68.5 81.2 82.1 51.5 76.2 53.1
IWSLT REF(FS) 69.1 80.2 81.9 51.6 76.1 52.3

IWSLTREF(DP) 69.8 82.3 83.1 51.8 76.2 58.1
IWSLTREF(PD) 70.1 82.1 81.8 52.1 76.5 58.3

SWBD (BASE) 61.3 57.5 44.3 82.5 83.6 72.3
SWBD (FS) 61.5 58.4 48.5 82.1 83.5 72.5

SWBD (DP) 61.7 60.1 49.8 82.2 83.1 72.1
SWBD (PD) 62.4 59.2 51.5 83.4 84.5 73.1

Table 3: Disfluency results of the baseline

P R F1
Weight sharing [18] 92.1 90.2 91.1

BLSTM [16] 91.6 80.3 85.9
Translation-based [19] 94.5 84.1 89.0

EGBC [21] 95.7 88.3 91.8
Short sents (BERT) 96.1 91.7 93.8
Long sents (BERT) 82.6 86.1 84.3

Table 4: Disfluency results of combinations

F1(Short) F1(Long)
BASE 93.8 84.3

FS(SEP) 93.6 74.2
DP(SEP) 93.5 75.5
PD(SEP) 94.1 74.1
FS(SWBD) 93.5 87.1

DP(SWBD) 93.7 88.5
PD(SWBD) 94.3 89.2

MTL framework over the traditional MTL method. The per-
formance of punctuation based on the Switchboard dataset im-
proves nearly 1% in comma prediction, 2% in period predic-
tion, and 5% in question mark prediction in COMBINE (SEP)
/ SWBD (PD/DP). Despite of lacking Switchboard punctuation
labels in SEP training data, the results demonstrate that the dis-
fluency task can facilitate the generalization of punctuation pre-
diction by sharing general features in the shared layers. The

same improvement in IWSLT dataset can be observed in COM-
BINE(SWBD) / IWSLT (PD/DP).

The disfluency results are shown in Table 4. From the re-
sults, we can see there is little improvement in the disfluency
detection based on the short sentences while there exists obvi-
ous improvement or degradation based on the long sentences.
The disfluency detection performance degrades nearly 10% in
the separate dataset (DP(SEP) / PD(SEP)), indicating disflu-
ency detection of the long sentences is greatly influenced by
the accuracy of punctuation prediction. The performance im-
proves nearly 3% by combining two tasks with true punctua-
tions as shown in FS (SWBD). By modeling dependencies of
two tasks, there is additional 2% improvement shown in PD
(SWBD) compared with the traditional MTL method.

4. Conclusions

In this paper, we propose an attention based structure in the
MTL framework to model the dependencies of punctuation and
disfluency prediction tasks. Experimental results based on the
IWSLT and Switchboard datasets show the combinations can
improve the performance and generalization of two tasks com-
pared to a strong baseline from the separate modeling and the
tradition MTL modeling. As disfluency and punctuation are re-
lated to prosodic features, we will investigate combining both
textual and prosodic features based on the proposed method in
the future.
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