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Abstract
Mean teacher based methods are increasingly achieving state-
of-the-art performance for large-scale weakly labeled and un-
labeled sound event detection (SED) tasks in recent DCASE
challenges. By penalizing inconsistent predictions under dif-
ferent perturbations, mean teacher methods can exploit large-
scale unlabeled data in a self-ensembling manner. In this paper,
an effective perturbation based semi-supervised learning (SSL)
method is proposed based on the mean teacher method. Specif-
ically, a new independent component (IC) module is proposed
to introduce perturbations for different convolutional layers, de-
signed as a combination of batch normalization and dropblock
operations. The proposed IC module can reduce correlation
between neurons to improve performance. A global statistics
pooling based attention module is further proposed to explic-
itly model inter-dependencies between the time-frequency do-
main and channels, using statistics information (e.g. mean, stan-
dard deviation, max) along different dimensions. This can pro-
vide an effective attention mechanism to adaptively re-calibrate
the output feature map. Experimental results on Task 4 of the
DCASE2018 challenge demonstrate the superiority of the pro-
posed method, achieving about 39.8% F1-score, outperforming
the previous winning system’s 32.4% by a significant margin.
Index Terms: sound event detection, semi-supervised learning,
independent component analysis, statistics pooling

1. Introduction
Sound event detection (SED) is the task of determining when
and where target event categories occur in continuous audio.
SED has attracted significant research attention due to its wide
application in real-world systems, such as robotics [1], smart
home devices [2], health care, and audio based indexing and
retrieval [3, 4]. With the development of deep learning tech-
niques, several mainstream deep neural networks (DNN), such
as CNN, RNN and CRNN, have recently achieved state-of-the-
art SED performance [4, 5, 6].

However, real-life SED is challenging, in part due to the
lack of large-scale well annotated audio datasets, which are
generally expensive and time-consuming to collect. Semi-
supervised learning (SSL) SED methods that can exploit real
data (which is either weakly labeled – without timestamp – or is
unlabeled) to improve system performance, have thus drawn in-
creasing research interest. Recent Detection and Classification
of Acoustic Scenes and Events (DCASE) challenges have in-
cluded a task for the evaluation of SSL based SED in domestic
environments with weakly labeled audio data. There are sev-
eral semi-supervised learning based methods in the literature,
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Figure 1: (Left) framework of mean teacher based semi-
supervised SED learning for large-scale weakly labeled data,
and (a) the common Conv-Bn-Relu baseline convblock. (b) Our
proposed Independent Component(IC) convblock with time-
frequency-channel attention(TFC-A) module.

including self-training [7], temporal ensembling (TE) [8], vir-
tual adversary training (VAT) [9] and mean teacher (MT) [10].
In [7], the self-training based method was proposed to exploit
the unlabeled data by generating pseudo-labels using models
trained with small-size labeled data. In [8, 9, 10], perturbation
based methods were proposed under the smoothness assump-
tion, which indicates that two data points close to each other
in feature space are likely to have the same label [11]. Among
these methods, MT has shown promising SED performance in
DCASE challenges, where the teacher acts as an ensemble of
the students to generate the targets for SSL, and the consistency
cost is employed as a regularization term. The key to effec-
tive MT is choosing suitable data and/or model perturbation to
form a better teacher model from the student model and thus
improve target quality. However, simply applying randomized
data augmentation or dropout may not be optimal for introduc-
ing effective perturbation. In [12], a spec-augment technique
was applied to improve data augmentation while in [13], differ-
ent teacher and student models were exploited to perform SED
and audio tagging(AT) respectively.

Inspired by independent component (IC) module in [14],
in this paper, we propose an effective perturbation based semi-
supervised learning (SSL) method based on mean teacher, as
shown in Figure 1. This includes a new IC module, designed
as a combination of batch normalization(BN) [15] and drop-
block [16] operations. Its goal is two-fold: (1) Apply pertur-
bations to the input of the internal convolutional layer to learn
a better teacher and (2) Construct whitened input for convo-
lutional filters in each intermediate convolutional layer. Com-



pared to dropout, the dropblock drops units in a contiguous re-
gion of a feature map, which can reduce the spatial correlation
of the input. The IC module (BN+Dropblock) can approximate
independent component analysis (ICA), which is traditionally
implemented by two steps: the zero-phase component analysis
(ZCA) to whiten the network activations, and rotation opera-
tions to get the final independent components [17]. That is, BN
replaces the ZCA, while the dropblock reduces the dependen-
cies within activations.

Furthermore, motivated by “squeeze-and-excitation” [18],
which models inter-dependencies between the channels, a
global statistics pooling based attention module is further pro-
posed to explicitly model inter-dependencies between the time-
frequency domain and channels using statistics information
(e.g. mean, standard deviation, max) computed along differ-
ent dimensions. This provides an effective attention mechanism
which can adaptively re-calibrate the output feature map.

To evaluate the effectiveness of the proposed methods, ex-
tensive experiments have been conducted on DCASE2018 chal-
lenge task4 benchmarks. The experimental results show its su-
periority with 39.79% F1-score compared to 32.4% in the win-
ning system.

2. Baseline method
In this section, we will firstly introduce the mean teacher based
framework for SED [10], as shown in left of Figure 1. We adopt
CRNN as the backbone architecture [19]. The CNN part is com-
posed of 5 convolutional blocks, followed by two Bi-GRU lay-
ers to model long-term relationships and a localization module.

Since the task 4 of DCASE challenges focuses on weakly
labeled data, which consists of AT and SED tasks. In mean
teacher, two CRNNs (namely, teacher and student) with the
same architecture are used. And the teacher model is updated by
exponential moving average of the student model parameters.
The consistency loss Lconsist is defined as the expected dis-
tance between the AT output of teacher model T (with weights
θ′ and perturbation η′) and student model S (with weights θ and
perturbation η), which is

Lconsist =MSE(SθAT (x; η),Tθ′AT
(x; η′)) (1)

, where MSE is short for mean squared error.
In the baseline SED system, spec-augment [20] is applied

to the input of CRNNs to perform input perturbation. This
may be further improved by adding perturbation to the inter-
mediate convolutional layer, such as dropout [21]. We will in-
troduce our proposed method, in which the IC convolutional
block(convblock) is used, instead of baseline convblock, to gen-
erate perturbation to intermediate convolutional layer. Further-
more, an attention mechanism based on global statistics infor-
mation is proposed to improve the effectiveness of convblock
output.

3. The perturbation based semi-supervised
learning

As aforementioned, the proposed perturbation based SSL
framework is obtained by replacing the traditional convblock
(in Figure 1(a)) to Independent Component(IC) convblock
with time-frequency-channel attention(TFC-A) module (in Fig-
ure 1(b)) The IC module is placed before the convolutional
layer. It is worth noting that this is different from the opera-
tions in common practice, the BN layer is placed after the con-

volutional layer, followed by a non-linear activation. The TFC-
A module, meanwhile, is proposed to explicitly model inter-
dependencies between the time-frequency domain and chan-
nels. Details of the IC and attention modules will be described
in the following subsections.

3.1. Independent Component(IC) module

Data or model perturbation plays an important role in the mean
teacher SSL method. Generally, the perturbation is applied to
the input spectrograms, via data augmentation techniques in-
cluding Gaussian noise and spec-augment [20] . From this per-
spective, dropout [21] can be considered as a type of perturba-
tion applied to the input of intermediate layer. However, it is
shown that the dropout is less effective for convolutional layer
than fully connected layer [16]. This may perhaps be caused
by the fact that activation units in convolutional layer are spa-
tially correlated, and the information of the dropped units can
be partially recovered by the surrounding units. Furthermore,
proposed by Li et al. [22], if dropout is placed before BN, it
may lead to biased estimation of the mean and standard varia-
tion hyper-parameters in BN.

In this paper, an effective IC module, which consists of the
BN and dropblock operator, is proposed. The BN is applied
to normalize the input to distribution with zero mean and unit
variance. And then in dropblock, which is a structured form of
dropout, contiguous regions of a neurons are set to zero. By
randomly dropping neurons in this way, the IC module can ef-
fectively introduce the perturbation to the input of convolutional
layer. IC module in fact produces various student models, lead-
ing to a better teacher obtained by ensembling student models.

Besides, the IC module can also approximate the feature
whitening operation, such as ZCA and ICA [17], which may fa-
cilitate the training procedure. Specially, ICA composes of two
steps: 1) ZCA to de-correlate the input features, 2) Rotation
to reduce the dependence. However, ICA is generally compu-
tational complex, especially for whitening the activations of a
wide neural network.

For dropblock, there are two main hyper-parameters,
drop prob and block size. The drop prob is defined same as
dropout. The block size defines the dropping area in activation
map, and when block size = 1, dropblock resembles standard
dropout.
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Figure 2: Illustration of our proposed statistics pooling based
attention modules, (a) channel attention (C-A) module, and (b)
time-frequency attention (TF-A) module.



3.2. Statistics pooling based attention modules

Given an intermediate feature map U ∈ RC×T×F , the global
statistics pooling based attention module consists of two parts:
1) Channel-attention module(C-A) with an 1D channel attention
map MC ∈ RC , and 2) Time-frequency module(TF-A) with a
2D time-frequency attention map MTF ∈ RT×F where T , F
andC are time, frequency and channel dimensions respectively.

Different statistics information from U (e.g. mean, stan-
dard deviation, max) is exploited for C-A and TF-A.

3.2.1. Channel Attention(C-A)

As shown in Figure 2(a), the statistics pooling is used to calcu-
late the mean µ ∈ RC and standard deviation σ ∈ RC over the
time-frequency domain

µ =
1

T × F

T∑
i=1

F∑
j=1

u(i, j) (2)

σ =

√√√√ 1

T × F

T∑
i=1

F∑
j=1

u2(i, j)− µ2 (3)

The output of statistics pooling z is obtained by concatenating
the mean and standard z = [µ;σ]. The channel attention map
MC is calculated via series of non-linear operations,

MC = σ(W2(δ(W1z))) (4)

where W1 ∈ R2C×C
r , W2 ∈ R

C
r
×C denote FC layers, σ(·)

and δ(·) denote sigmoid and ReLU respectively, r is the reduc-
tion rate.

3.2.2. Time-frequency Attention(TF-A)

As shown in Figure 2(b), in TF-A module, a 2D feature map
MTF ∈ RT×F is used to provide the attention on time-
frequency domain. It is obtained by first calculating the mean
and max information over channels, followed by a convolu-
tional layer and a sigmoid activation

MTF = σ(fk×k[AvgPool(U);MaxPool(U)]) (5)

where f denotes a convolutional layer with kernel size k × k.

3.2.3. Arrangement of Attention Modules

As aforementioned, the C-A and TF-A may provide comple-
mentary attentive information from their feature maps. Given
C-A and TF-A modules, there are different arrangements of
them, namely a sequential or parallel arrangement. For sequen-
tial arrangement of C-A and TF-A modules, we can have “C-A
+ TF-A” arrangement

U′ = MC(U)⊗U

U′′ = MTF (U
′)⊗U′ (6)

and reverse ordered sequential arrangement “TF-A + C-A”

U′ = MTF (U)⊗U

U′′ = MC(U
′)⊗U′ (7)

For parallel module is implemented as,

U′ = MTF (U)⊗MC(U)⊗U (8)

, where⊗ denotes element-wise multiplication, and during mul-
tiplication, the attention map should be broadcasted. In experi-
ments, we will evaluate different arrangement of C-A and TF-A
modules.

4. Experiments Setup
4.1. Dataset

The experiments are conducted on the benchmark dataset from
Task4 of the DCASE 2018 Challenge [23]. The dataset con-
tains 1578 weakly-labeled training clips, 14412 unlabeled in-
domain training clips, 39999 unlabeled out-of-domain training
clips, 288 development clips and 880 evaluation clips. The av-
erage length of occurrence of each event class is presented in
Table 1, indicating the very significant variance in duration be-
tween events. In our experiments, we utilize weakly-labeled
clips with unlabeled in-domain clips as training set, and evalu-
ate the performance on publicly available evaluation set.

Table 1: Average length and median filter size of each class in
the development dataset.

Sound event Average Median filter
label length(s) size(s)

Alarm bell ringing 1. 53 0.50
Blender 5. 35 1.75
Cat 0. 81 0.26
Dishes 0. 56 0.16
Dog 1. 03 0.34
Electric shaver toothbrush 7. 42 2.46
Frying 9. 34 3.10
Running water 5. 61 1.85
Speech 1. 51 0.50
Vacuum Cleaner 8. 66 2.86

4.2. Feature Extraction

The input features used in the proposed system are log-mel
spectrograms, which are extracted from the audio signal resam-
pled at 32 kHz. The spectrogram uses 64 Mel-scale filters and
a window size of 32ms with 50% overlap between windows.
As a result, each 10-second sound clip is transformed into a 2D
time-frequency representation with a size of (640 × 64).

4.3. Experimental Settings

The neural networks are trained using the Adam optimizer [24],
where the maximum learning rate is set to 0.001, and the total
training epochs are set to 100. Specifically, there is a rampup
for the learning rate over the first 20 epochs, and an adaptive
median filter is used for backend processing. The filter size for
each event category is selected according to Table 1.

For IC modules, we performed a set of experiments to de-
termine that a sensible block size is 5 for this configuration.
In the TFC-A modules, similar empirical testing found a good
reduction rate r is 8, and a reasonable kernel size for the convo-
lutional layer in the TF-A module is 5× 5.

Event based macro-F1 is used as the main metric For SED
tasks. The experiment results are all evaluated by the sed eval
toolbox [25]. Onsets are evaluated with a collar tolerance of
200ms. Tolerance for offsets is computed per event as the max-
imum of 200ms or 20% of event length.

5. Results and Discussion
In experiments, we evaluate the performance of perturbation
based SED systems including: 1) IC(dropblock): with IC mod-
ule only to introduce perturbation on input of intermediate con-



Table 2: Results of our proposed methods.

System Macro F1, %

Winner’s system [26] 32.4
IC(dropblock) 39.30
TF-A + C-A 39.50
IC(dropblock)+TF-A + C-A 39.79

volutional layer, 2) TF-A + C-A: with the sequential arrange-
ment of TF-A and C-A to introduce the attention mechanism for
output, and 3) IC(dropblock + TF-A + C-A): the combination of
both 1) and 2). As shown in Table 2, the proposed IC module, as
well as TFC-A module can achieve F1-score over 39.00%. In
addition, by combining the IC(dropblock) and “TF-A + C-A”
modules, the F1-score can achieve 39.79%, which significantly
outperforms the previously winning score of 32.4% [26]. The
experiments results demonstrate the effectiveness of our pro-
posed methods. A detailed ablation analysis will be conducted
in the next subsections.

5.1. Evaluations of dropblock or dropout in IC module

We further evaluate the performance of dropout and dropblock
in IC module with different drop prob. As shown in Table 3,
the CRNN baseline in Figure 1(a) achieves an F1-score of
36.17%, with 3.77% gain over winner’s system in DCASE2018
challenges. This may come from the superiority of the CRNN
system as well as the adaptive median filter (in Table 1) for
backend processing. The performance of system using IC mod-
ule is further improved compared with the baseline system.

Furthermore, we can see that with the same drop prob,
the performance of IC(dropblock) is generally better than
IC(dropout) [14], indicating that our proposed IC(dropblock)
provides more effective perturbations for convolutional layers.
Specifically, among different drop prob, IC(dropblock) with
drop prob=0.05 provides best F1-score of 39.30%, relative
3.13% improvement of our baseline system. To further ana-
lyze the effectiveness of TFC-A modules, we conduct several
ablation experiments.

Table 3: SED results from evaluating the IC modules.

ConvBlock drop prob Macro F1, %

Baseline convblock - 36.17
IC(no perturbation) 0 37.74
IC(dropout) [14] 0.05 38.34
IC(dropout) 0.10 37.28
IC(dropout) 0.20 35.86

IC(dropblock) 0.05 39.30
IC(dropblock) 0.10 38.10
IC(dropblock) 0.20 36.49

5.2. Evaluations of different TFC-A

In the proposed attention method, different types of statistics
information (e.g. mean, standard deviation, max) are used
for TF-A and C-A. Results in Table 4, reveal quite wide dif-
ferences in performance for the different types of statistics in
the C-A module. Specially C-A(mean), same as Squeeze-and-
Excitation [18], can improve the performance from 37.74%

Table 4: SED performance of different TFC-A modules.

TFC-A module Macro F, %

- 37.74
C-A (mean) 38.68
C-A (max) 25.25
C-A (mean std) 39.00
TF-A (mean max) 38.04

Parallel (TFC-A) 37.96
C-A + TF-A 37.54
TF-A + C-A 39.50

(baseline without C-A) to 38.68%. On the contrary, C-A(max)
only achieves the performance of 25.25%, indicating that C-
A(max) may loss the information of the overlapped events. In
addition, C-A(mean std) incorporates the standard deviation as
a second-order statistic information, and achieves F1-score of
39.00%. Finally, TF-A(mean-max) provides a slight improve-
ment over the baseline system. This indicates that the class-wise
information tends to be relatively strongly encoded in the chan-
nel dimension.

We also evaluate the performance of combining TF-A or
C-A modules in parallel or sequential fashion, as shown in Ta-
ble 4. We can see that sequential arrangement (TF-A + C-A) can
achieve the F1-score of 39.50%, performing best with the same
settings. Interestingly, the reverse ordered sequential arrange-
ment (C-A + TF-A), performs worst. From the previous exper-
iments we already know the importance of the C-A module. It
seems that performing TF-A first strengthens the information on
the time-frequency domain but it is necessary to apply C-A to
emphasize the important channels. In the converse case, the C-
A first sequential attention is overruled by the subsequent TF-A
operation, thus reducing performance. The parallel TFC-A also
provides slight improvement to the baseline system, but worse
than the sequential attention module(TF-A + C-A).

6. Conclusion
In this paper, a novel perturbation based semi-supervised learn-
ing method, combining batch normalization with dropblock, is
investigated. This not only provides perturbation to the convo-
lutional layer but also whitens their inputs, to improve semi-
supervised SED performance. Experimental results reveal the
proposed dropblock based IC modules outperform conventional
dropout, providing more effective perturbations to the convolu-
tional layers. Furthermore, statistical pooling based attention
module is used to explicitly model inter-dependency between
time-frequency and channel domains. Among mean, standard
deviation and max computed on different dimensions, we se-
quentially apply time-frequency attention, followed by channel
attention, performing best. By combining the IC module and
TFC-A module, the final F1-score of 39.8%, significantly out-
performs the 32.4% achieved by the previously published win-
ning system. In future, we hope to exploit other perturbation
and attention types for semi-supervised SED.
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