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Abstract

Modern text-to-speech (TTS) and voice conversion (VC)
systems produce natural sounding speech that questions the se-
curity of automatic speaker verification (ASV). This makes de-
tection of such synthetic speech very important to safeguard
ASV systems from unauthorized access. Most of the existing
spoofing countermeasures perform well when the nature of the
attacks is made known to the system during training. However,
their performance degrades in face of unseen nature of attacks.
In comparison to the synthetic speech created by a wide range
of TTS and VC methods, genuine speech has a more consistent
distribution. We believe that the difference between the dis-
tribution of synthetic and genuine speech is an important dis-
criminative feature between the two classes. In this regard, we
propose a novel method referred to as feature genuinization that
learns a transformer with convolutional neural network (CNN)
using the characteristics of only genuine speech. We then use
this genuinization transformer with a light CNN classifier. The
ASVspoof 2019 logical access corpus is used to evaluate the
proposed method. The studies show that the proposed feature
genuinization based LCNN system outperforms other state-of-
the-art spoofing countermeasures, depicting its effectiveness for
detection of synthetic speech attacks.

Index Terms: Feature genuinization, synthetic speech detec-
tion, ASVspoof 2019, logical access attacks

1. Introduction
In the recent years, automatic speaker verification (ASV) sys-
tems are deployed in different real-world applications [1–3].
These systems are exposed to spoofing attacks for unautho-
rized access, hence detection of such attacks attracts much at-
tention [4, 5]. Various spoofing attacks are broadly classified
into replay, impersonation, voice conversion (VC) and text-to-
speech synthesis (TTS) attacks [6]. The latest progress in VC
and TTS systems can produce perceptually natural sounding
speech, which poises a threat to fool the ASV systems [7–9].

The research on spoofing countermeasures grew in the last
decade since the inception of ASVspoof1 challenge series. The
challenge provided a platform to the researchers across differ-
ent domains to explore fake speech detection using a common
benchmarked corpus [10,11]. Its recent edition ASVspoof 2019
is devoted to detection of both synthetic and replay speech with
two subtasks [12]. The logical access track focuses on detection
of synthetic speech created using state-of-the-art VC and TTS
systems, which is the focus of this paper.
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The explorations on spoofing attack detection cover two di-
rections from the perspective of a detection task. The spoof-
ing countermeasures either focus on novel front-end features
or effective classifiers. Some of the former studies focused on
the importance of robust features such as cochlear filter cep-
stral coefficient and instantaneous frequency (CFCCIF) [13],
linear frequency cepstral coefficients (LFCC), subband spec-
tral flux coefficients and spectral centroid frequency coeffi-
cients [14]. Later, the long-term constant-Q transform (CQT)
based constant-Q cepstral coefficients (CQCC) proved to be one
of the strong front-ends for synthetic speech detection [15]. The
recent explorations with features derived from CQT are also
found to effective for spoof detection [16–18].

With the advent of deep learning methods, robust classi-
fiers are investigated for detection of spoofing attacks. Some of
these include end-to-end systems with light convolutional neu-
ral networks (LCNN) [19, 20], squeeze excitation and residual
networks [21, 22]. The end-to-end systems have much differ-
ence with the works that focus on novel features. The former
are data driven deep learning methods, while the latter empha-
size on hand-crafted feature, which require prior knowledge.
Further, we note that the same neural network based system
can perform differently for a range of features [19]. Therefore,
a robust spoofing countermeasure is required to have a strong
feature extractor that captures the discriminative artifacts along
with an effective classifier.

The synthetic speech attacks can be created with a wide
range of TTS and VC algorithms [6]. In general, spoofing
countermeasures do not handle synthetic speech from unseen
sources because of lack of generalization ability [23]. We note
that genuine examples have a comparatively lower variance than
synthetic speech. We believe that the consistent characteris-
tics of genuine speech set genuine speech apart from a variety
of different synthetic speech. A recent study using temporal
domain information shows that spoofing detection can be im-
proved by modifying the probability mass function of spoofed
speech close to that of the genuine speech [24]. This process
is termed as genuinization, which is found to be effective when
applied to both train and test examples for synthetic speech de-
tection.

In a similar direction, we hypothesize that, if we are able
to derive a model that fits well the distribution of the genuine
speech, such a model will take genuine speech as the input and
generate genuine speech as the output following the same distri-
bution of the genuine speech. However, when the model takes
spoof speech as input, it will generate very different output, that
amplifies the difference to genuine speech. With this hypothe-
sis, we propose to derive a model using the genuine speech fea-
tures with convolutional neural network (CNN) that is referred
to as genuinization transformer. Further, the process is referred
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Figure 1: The block diagram of feature genuinization process.

to as feature genuinization as a given feature representation is
projected on a domain learned using the genuine features. The
genuinization transformer is then used together with an LCNN
system for detection of synthetic speech attacks.

The rest of the paper is organized as follows. Section 2
introduces the details of proposed feature genuinization. Sec-
tion 3 describes the feature genuinization based LCNN system
for detection of spoofing attacks. The experiments and their re-
sults with discussion are reported in Section 4 and Section 5,
respectively. Finally, the paper is concluded in Section 6.

2. Feature Genuinization
We aim to learn a transformer that does not change the char-
acteristics of genuine speech features, whereas it projects spoof
speech to a different output, maximizing the difference between
genuine and spoof speech. Figure 1 shows the block diagram of
the proposed feature genuinization process. It can be observed
that there are two stages of the process. The first stage basi-
cally focuses on training a feature genuinization transformer
using the characteristics features derived from only genuine
speech. During the second stage, this trained feature genuiniza-
tion transformer is used to convert any given features that en-
hances the discrimination of genuine and spoof speech.

The CNN based architectures have shown their effective-
ness in the field of anti-spoofing research [25]. In this regard, we
use CNN for training the genuinization transformer as shown in
Figure 1. The detailed architecture of the CNN used in this
framework can be seen from Figure 2. It can be observed that
the functionality of the proposed genuinization transformer is
similar to that of an autoencoder. However, the output of gen-
uinization transformer is considered as the final transformer re-
sult. In addition, we apply a full convolutional layer and there-
fore, there is no fully connected layers in the transformer. This
can thereby force the network to focus on the temporal cor-
relation between the input signal and the whole stratification
process. Further, it reduces the number of training parameters,
which significantly results in less training period.

A study in [26] shows that it is a good practice to use strided
convolution rather than pooling to downsample as it allows the
network to learn its own pooling function. Therefore, we use
this method during the training of genuinization transformer. In
addition, batchNorm2d and leaky rectified linear unit (ReLU)
activation function are used in the training because they can
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Figure 2: The architecture of genuinization transformer.

promote healthy gradient flow, which is critical for the learn-
ing process.

The architecture of proposed genuinization transformer
shown in Figure 2 consists of two functionalities: encoding
and decoding. During the encoding phase, the input signal is
compressed through a number of strided convolutional layers,
and then the convolution result is obtained by leaky ReLU. In
the decoding phase, the encoding process is reversed by de-
convolution, and then by ReLU. In this way, the transformer
works as an autoencoder that learns the characteristics of gen-
uine speech [27]. As a result of this, it amplifies the discrimina-
tion of genuine and spoof speech in the transformed domain.

Once the genuinization transformer is trained, it can be
used to transform any given genuine/spoofed features to a trans-
formed domain that is learned using the only genuine feature
characteristics. This novel way of transforming the feature is
referred as feature genuinization as mentioned earlier. Next, we
discuss about the LCNN system using the feature generalization
for detection of spoofing attacks.

3. LCNN with Feature Genuinization
Various deep learning systems have shown their effectiveness
for spoofing attack detection [19, 21, 22, 28, 29]. Therefore,
we plan to use the proposed feature genuinization with a deep
learning system. The LCNN is one of the strongest systems
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that has proven to be useful for its compactness and efficacy for
anti-spoofing [19, 30]. In this work, we use LCNN based sys-
tem with the transformed features obtained using genuinization
transformer.

Figure 3 shows the block diagram of the proposed feature
genuinization based LCNN system. We consider log power
spectrum (LPS) of a given speech as the input feature to the
genuinization transformer. It transforms the given input LPS to
a genuinized feature, which is an input to the LCNN. During
training, the training data and their corresponding label infor-
mation is fed to the LCNN system. Once the training is com-
pleted, the detection result for a given input to the system can
be obtained to identify the spoofing attacks.

We used Max-Feature-Map (MFM) activation function in-
stead of commonly used ReLU function for the LCNN system
similar to that in [19]. The main advantage of MFM is that it
can learn compact features instead of sparse high-dimensional
ones like ReLU. Further, MFM resorts to max function to sup-
press the activations of a small number of neurons so that MFM
based CNN models are light and robust. Therefore, these are
applied to reduce the dimensionality of the output and obtain
more discriminative feature maps.

4. Experiments
In this section, we discuss the database and experimental setup
for the studies.

4.1. Database

We consider the ASVspoof 2019 logical access corpus2 for the
studies of synthetic speech detection in this work [12, 31]. The
corpus has three partitions, which are train, development and
evaluation set. The genuine examples of the ASVspoof 2019
corpus are part of VCTK3 database, which is a standard corpus
for speech synthesis. It contains 107 speakers data that includes
46 male and 61 female speakers. It is to be noted that there is
no overlap of speakers across different subsets. The synthetic
speech attacks for the development set are created with two VC
and four TTS state-of-the-art methods. However, the spoofed
examples of evaluation set are derived from unseen methods.

2https://datashare.is.ed.ac.uk/handle/10283/3336
3http://dx.doi.org/10.7488/ds/1994
4https://pytorch.org

Table 1: Summary of ASVspoof 2019 logical access corpus.

Subset #Male #Female #Bonafide #Spoofed
Train 8 12 2,580 22,800

Development 4 6 2,548 22,296
Evaluation 21 27 7,355 63,882

The ASVspoof 2019 uses an ASV-centric metric given by tan-
dem detection cost function (t-DCF) as the primary metric and
equal error rate (EER) as a secondary metric for benchmarking
the systems [31, 32]. We considered the scores of ASV sys-
tem given along with the ASVspoof 2019 logical access corpus
to combine with that from spoofing countermeasure system for
computation of t-DCF measure. Table 1 presents a summary of
the ASVspoof 2019 logical access corpus.

4.2. Experimental Setup

The long-term CQT based features are found to capture use-
ful artifacts for spoofing attack detection [33]. Therefore, we
use LPS derived from CQT as the input feature for the studies.
The parameters for CQT computation are set based on follow-
ing those in [15]. The number of octaves and frequency bins in
every octaves are set at 9 and 96, respectively. In addition, the
static dimension of LPS is 863. For LPS extraction from CQT,
the length of every file is set as 256 frames by either padding
and cropping. In particular, the examples with frame-length
over than 256 frames are truncated, while the examples with
frame-length less than 256 frames are filled with the last frame
value. Thus, the we have an input feature of 863×256 for every
example.

During training of the LCNN system, an additional batch
normalization step is used after max pooling layer to increase
the stability and convergence speed. As such models are prone
to overfitting, we consider dropout and weight decay methods
to avoid such issue. The dropout is used for fully connected lay-
ers with the ratio 0.4 and the weight decay is set to 2 × 10−4.
In addition, the parameters like number of layers and nodes are
optimized on the development set. The proposed feature gen-
uinization based LCNN system is implemented using PyTorch4

toolkit.

5. Results and Discussion
The proposed system is a pipeline with a feature genuiniza-
tion followed by LCNN. We compare the proposed system
with LCNN baseline without feature genuinization. Further,
we also consider the two baseline spoofing countermeasures
of ASVspoof 2019 challenge. They are based on CQCC and
LFCC features with Gaussian mixture model (GMM) classi-
fier [12, 31].

Table 2 shows the results of proposed feature genuinization
based LCNN system, that we refer as FG-LCNN, on ASVspoof
2019 logical access corpus and its comparison to the baseline
systems. We observe that introducing feature genuinization
module in the baseline LCNN system improves the detection
of spoofing attacks. While the results on the development set
are close, the improvement from the proposed system is evi-
dent from the results on the evaluation set, which contains more
challenging spoofing attacks of unseen nature. This confirms
our hypothesis to use a feature genuinization model exploiting
the characteristics of genuine speech. Further, we find that the
performance of the proposed system is much better than the two
ASVspoof 2019 challenge baselines.



Table 2: Performance of proposed feature genuinization based
LCNN (FG-LCNN) and its comparison to baseline systems on
ASVspoof 2019 logical access corpus.

System Development Set Evaluation Set
t-DCF EER (%) t-DCF EER (%)

Baseline: LCNN 0.002 0.080 0.111 4.448
FG-LCNN 0.000 0.002 0.102 4.070

ASVspoof 2019 Baseline [12]
CQCC-GMM 0.0123 0.43 0.2366 9.57
LFCC-GMM 0.0663 2.71 0.2116 8.09

Table 3: Performance of proposed feature genuinization based
LCNN (FG-LCNN) and its comparison to feature spoofing
based LCNN (FS-LCNN) contrast system on ASVspoof 2019
logical access corpus evaluation set.

System t-DCF EER (%)
Baseline: LCNN 0.111 4.448

Prposed: FG-LCNN 0.102 4.070
Contrast: FS-LCNN 0.138 4.860

We further perform a justification experiment for validation
of our proposed method. The idea behind feature genuinization
process is based on the assumption that the genuine speech ex-
amples are considered to be less varied than the synthetic speech
attacks created using a wide range of methods. We perform a
contrast experiment, where we learn a transformation model us-
ing CNN by only considering the spoofed speech features. We
refer this process as feature spoofing and the model as spoofing
transformer, similar to the case of our proposed method. This
spoofing transformer is then used to transform any given fea-
ture of genuine or spoofed speech to another domain, which is
then used in the LCNN system pipeline, that we call FS-LCNN.
The rest of the experimental setup remains the same to that our
proposed method.

Table 3 shows the performance comparison of the FS-
LCNN contrast system with our proposed FG-LCNN and the
baseline LCNN system. We consider the results of evaluation
set for the comparison as the results of development set can
show very accurate detection of synthetic speech attacks. We
find that the FS-LCNN contrast system does not perform better
than our proposed FG-LCNN system, but rather degrades from
the baseline LCNN system. This further strengthens our pro-
posed idea of using feature genuinization process with LCNN
system for detection of spoofing attacks.

We are now interested in comparing the proposed system to
various single system based results available of ASVspoof 2019
logical access corpus. In this regard, we consider some of the
well performing front-end as well as back-ends that have shown
their effectiveness for spoofing attack detection in ASVspoof
2019 challenge. Some of the those front-ends are zero time
windowing cepstral coefficients (ZTWCC), single frequency
cepstral coefficients (SFCC) and instantaneous frequency cep-
stral coefficients (IFCC) that are implemented with GMM based
classifier [34]. Further, deep learning based classifiers such
as deep neural network (DNN), ResNet and LCNN are used
for detection of spoofing attacks using front-ends like mel fre-
quency cepstral coefficient (MFCC), constant-Q statistics-plus-
principal information coefficients (CQSPIC), CQCC, LFCC,

Table 4: Performance comparison of the proposed feature gen-
uinization based LCNN system to some known single systems
on ASVspoof 2019 logical access evaluation set.

System t-DCF EER (%)
ZTWCC-GMM [34] 0.141 6.13

IFCC-GMM [34] 0.357 15.59
SFFCC-GMM [34] 0.323 13.97
CQCC-DNN [35] 0.308 12.79
LFCC-DNN [35] 0.234 9.65

MFCC-ResNet [36] 0.204 9.33
LPS-DFT-ResNet [36] 0.274 9.68

CQCC-ResNet [36] 0.217 7.69
CQSPIC-DNN [35] 0.183 7.81
CQSPIC-GMM [35] 0.164 7.74
LFCC-LCNN [19] 0.100 5.06

LPS-FFT-LCNN [19] 0.103 4.53
Proposed: FG-LCNN 0.102 4.07

LPS of discrete Fourier transform (DFT) and fast Fourier trans-
form (FFT) in ASVspoof 2019 challenge [19,35–37]. We report
the respective system results from their published works for the
comparison on the evaluation set of ASVspoof 2019 logical ac-
cess corpus.

Table 4 reports the performance comparison of the pro-
posed FG-LCNN system to some of the single systems reported
in ASVspoof 2019 challenge discussed above. It is observed
that the LCNN based systems represent the best performing
single system, that justifies its use as the baseline LCNN in
this work. Further, the effectiveness of proposed feature gen-
uinization is evident on using it with the LCNN system, which
outperforms other reported single systems in terms of EER on
ASVspoof 2019 logical access corpus.

6. Conclusion
This work proposes a novel feature genuinization based LCNN
system for detection of synthetic speech attacks. The charac-
teristics of genuine speech are exploited to learn a model using
CNN. It transforms a genuine feature distribution more close to
that of the genuine speech, whereas leads to a different output
for features of spoof speech, thereby maximizing their differ-
ence. The transformed features are then used with an LCNN
system. The studies conducted on ASVspoof 2019 logical ac-
cess corpus show the effectiveness of the feature genuinization
based LCNN system for detecting synthetic speech attacks. The
comparison of the proposed system to various state-of-the-art
spoofing countermeasures showcases it as one of the strong sin-
gle anti-spoofing system. The future work will focus on extend-
ing the studies to replay attack detection.
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