Complex-Valued Variational Autoencoder: A Novel Deep Generative Model for Direct Representation of Complex Spectra

Toru Nakashika
The University of Electro-Communications, Japan
nakashika@uec.ac.jp

Abstract
In recent years, variational autoencoders (VAEs) have been attracting interest for many applications and generative tasks. Although the VAE is one of the most powerful deep generative models, it still has difficulty representing complex-valued data such as the complex spectra of speech. In speech synthesis, we usually use the VAE to encode Mel-cepstra, or raw amplitude spectra, from a speech signal into normally distributed latent features and then synthesize the speech from the reconstruction by using the Griffin-Lim algorithm or other vocoders. Such inputs are originally calculated from complex spectra but lack the phase information, which leads to degradation when recovering speech. In this work, we propose a novel generative model to directly encode the complex spectra by extending the conventional VAE. The proposed model, which we call the complex-valued VAE (CVAE), consists of two complex-valued neural networks (CVNNs) of an encoder and a decoder. In the CVAE, not only the inputs and the parameters of the encoder and decoder but also the latent features are defined as complex-valued to preserve the phase information throughout the network. The results of our speech encoding experiments demonstrated the effectiveness of the CVAE compared to the conventional VAE in both objective and subjective criteria.

Index Terms: complex neural networks, deep learning, variational autoencoder, speech synthesis, speech encoding

1. Introduction
Deep learning has been enormously successful in the fields of image processing, speech signal processing, and more [1]. Recently, generative models such as variational adversarial networks (GANs) [2, 3], variational autoencoders (VAEs) [4, 5], and restricted Boltzmann machines (RBMs) [6, 7] have been attracting attention because they are more interpretable and require less labelled data than discriminative models.

The VAE is especially easy to implement and train and has a powerful representation ability. The VAE consists of an encoder that encodes the input into latent variables and a decoder that reconstructs the input from the latent variables in a probabilistic manner. Both the encoder and decoder usually stack multiple layers to represent high-order abstraction, which results in deep neural networks (DNNs). The most popular type of VAE assumes Gaussian-distributed latent variables as the posterior given inputs and the standard normal distribution as the prior. The latent variables can also be modeled as other distributions such as categorical distribution [8, 9], vector quantization (VQ) [10, 11], Gaussian mixture models (GMMs) [12, 13], and the von-Mises-Fisher distribution [14].

Although many variations of the VAE have been proposed so far, to the best of our knowledge there is not yet a VAE with a complex-valued variable prior. For the other machine learning models, various extensions that represent complex-valued data have been proposed [15, 16, 17]. There are still many cases where we need to deal with complex-valued actual data such as medical images, radar images, wireless signals, and acoustic intensity. In the speech community, typically used acoustic features such as MFCC, Mel-cepstra, Mel-spectra, and amplitude spectra are all calculated from the complex spectra of speech. In other words, these features lack phase information and can no longer represent the original complex spectra. Especially in speech synthesis, we need to estimate the phase by using the Griffin-Lim algorithm [18] or recover the signal from the amplitude-based acoustic features by using vocoders such as a Mel-log spectrum approximation (MLSA) filter [19], WORLD [20], STRAIGHT [21], or WaveNet [22], which results in degraded reconstruction of speech.

In this paper, we propose an extension of the VAE, which we called complex-valued VAE (CVAE), that can directly encode complex-valued spectra and learn the distribution of complex-valued latent variables. The encoder and decoder consist of complex neural networks [15] and output complex normal distributions of the latent variable and the observation, respectively. In addition, the CVAE imposes the standard complex normal distribution with zero mean, unit covariance, and zero pseudo-covariance as a prior of the latent variables. The KL divergence between the prior and the posterior of the latent variables can still be derived into a quite simple form. We also propose a reparameterization trick in the CVAE training, similar to the conventional VAE. As this does not involve implicit gradients [23], the gradients of the decoder can be directly propagated back to the encoder during the training.

Some studies have reported the use of VAEs for representing a distribution of complex-valued output data [24, 25, 26, 27, 28, 29]. These methods assume a zero-mean complex normal distribution whose variance parameters are output by a decoder, whereas in this paper, we propose a complete complex-valued VAE consisting of complex-valued output, latent variables, and weights of the DNN encoder and decoder.

In Section 2, we briefly review the conventional VAE. In Section 3, we present our proposed model, CVAE, and its reparameterization trick. In Section 4, we report our experimental results. We conclude in Section 5 with a brief summary.

2. Preliminary: VAE
The variational autoencoder (VAE) [4] is a generative model that defines two paired distributions $q_\phi(l|x)$ and $p_\theta(z|l)$ of H-dimensional latent variables $l \in \mathbb{R}^H$ and D-dimensional observation $x \in \mathbb{R}^D$, where ϕ and θ are model parameters of an encoder and a decoder, respectively. $q_\phi(l|x)$ is actually an approximation of the real posterior distribution $p(l|x)$. The encoder and decoder are typically composed of neural networks (NNs), and their parameters $\{\phi, \theta\}$ are estimated using the auto-encoding variational Bayes (AEVB) algorithm. Given the ob-
Note that the approximation with only a sample where D sufficiently as long as the minibatch size is large enough [4].

From the point of view of an auxiliary function, the optimum in the VAE training, each parameter is optimized so as to maximize the conditional log-likelihood of the observation given the sampling process. This is typically resolved by utilizing a reparameterization trick in the Gaussian case, as discussed later.

2.1. The VAE with Gaussian latent variables

There has been much prior research on the VAE adopt the Gaussian distribution as the posterior and prior of latent variables. In this case, the encoder NN outputs a concatenated vector of the diagonal elements are the input. This kind of VAE also imposes a standard Gaussian prior on the latent variable distribution as $p(l) \equiv \mathcal{N}(0, I)$. Therefore, the second term on the right side of Eq. (2) can be made simpler:

$$ \mathbb{E}_{q_\phi(l|x)} \left[\log p_\theta(x|l) \right] \approx \frac{1}{2} \|x - a\|_2^2 + K, \quad (6) $$

where K is a constant independent of model parameters.

2.2. Reparameterization trick

The model parameters are optimized to maximize the lower bound by using the gradient method. However, the gradients of the decoder cannot be back-propagated toward the encoder due to the sampling process of Eq. (3). To circumvent this, we utilize the reparameterization trick, as shown in Fig. 1. With a normal sample $\epsilon \sim \mathcal{N}(0, I)$, a sample of latent variables in Eq. (3) becomes equivalent to

$$ \tilde{l} = \mu + \sqrt{\sigma} \circ \epsilon, \quad (7) $$

which is differential to the outputs of the encoder. Therefore, the gradients from the decoder can be back-propagated to the encoder.

3. Proposed model: CVAE

The VAE discussed above represents real-valued data due to the assumption of Gaussian-distributed observations. We can also properly represent binary data by assuming a Bernoulli distribution, which will change the loss function in Eq. (6) into a cross entropy. However, these models cannot represent complex-valued data correctly under the assumption of the distribution, although they can feed a concatenated vector of the real and imaginary parts of complex-valued data. We propose, therefore, a new generative model that directly represents complex-valued data through an encoder-complex-valued neural network (CVNN) and a decoder CVNN, similarly to the VAE, as shown in Fig. 2. We call this model a complex-valued variational autoencoder (CVAE). Unlike the vanilla VAE, both the encoder and decoder of CVAE output the distribution of complex-valued variables.

Let $z \in \mathbb{C}^D$ and $h \in \mathbb{C}^H$ be complex-valued data and complex-valued latent variables, respectively. The same as the conventional VAE, the objective of the CVAE $\mathcal{L}(\theta, \phi; z)$ is the variational lower bound of the log-likelihood $\log p(z)$, as

$$ \log p(z) \geq \mathcal{L}(\theta, \phi; z) = \mathbb{E}_{q_\phi(h|z)} \left[\log p_\theta(z|h) \right] - D_{KL}(q_\phi(h|z)||p(h)). $$

From the above, the first term on the right side of Eq. (2) can be made simpler:

$$ \mathbb{E}_{q_\phi(l|x)} \left[\log p_\theta(x|l) \right] \approx \frac{1}{2} \|x - a\|_2^2 + K, \quad (6) $$

where K is a constant independent of model parameters.

2.2. Reparameterization trick

The model parameters are optimized to maximize the lower bound by using the gradient method. However, the gradients of the decoder cannot be back-propagated toward the encoder due to the sampling process of Eq. (3). To circumvent this, we utilize the reparameterization trick, as shown in Fig. 1. With a normal sample $\epsilon \sim \mathcal{N}(0, I)$, a sample of latent variables in Eq. (3) becomes equivalent to

$$ \tilde{l} = \mu + \sqrt{\sigma} \circ \epsilon, \quad (7) $$

which is differential to the outputs of the encoder. Therefore, the gradients from the decoder can be back-propagated to the encoder.
Note that ϕ and θ, model parameters of the CVNN encoder and decoder, are all complex-valued here.

First, the CVAE defines the data conditional distribution as the multivariate complex normal distribution, as

$$ p_h(z|h) \triangleq \mathcal{N}_c(z; a, \Gamma, C) $$

$$ = \frac{1}{\pi^D \sqrt{|\text{det}(\Gamma)| \text{det}(C - \mathbf{i} \Gamma^T \Gamma^{-1} C)}} \cdot \exp \left\{ -\frac{1}{2} \left[z - a \right]^H \left[\Gamma \mathbf{i} C^H \Gamma^{-1} \Gamma^H - \mathbf{i} C \right] \left[z - a \right] \right\}, $$

where $a \in \mathbb{C}^D$, $\Gamma \in \mathbb{C}^{D \times D}$, and $C \in \mathbb{C}^{D \times D}$ denote the parameters of the complex normal distribution $\mathcal{N}_c(\cdot; a, \Gamma, C)$ of mean, covariance, pseudo-covariance, respectively. For simplicity, we use unit covariance and zero pseudo-covariance; i.e. $p_h(z|h) = \mathcal{N}_c(z; a, I, O)$, and the decoder outputs only the mean a in this paper. This provides the following deformation in regards to the first term on the right side of Eq. (8):

$$ \mathbb{E}_{q_h(h|z)} \left[\log p_h(z|h) \right] \approx -\| z - a \|^2 + K. \quad (11) $$

Second, the CVAE also defines the complex normal distribution on the latent variables to sample. As a simple but effective form, we assume the complex normal distribution with diagonal covariance and pseudo-covariance matrices, as

$$ \hat{h} \sim q_h(h|z) \triangleq \mathcal{N}_c(h; \mu, \Delta(\sigma), \Delta(\delta)), \quad (12) $$

where $\mu \in \mathbb{C}^H$, $\sigma \in \mathbb{R}^{+H}$, and $\delta \in \mathbb{C}^H$ are the outputs of the encoder. As a prior of the latent variables, we assume the standard complex normal as $p(h) \triangleq \mathcal{N}_c(0, I, O)$, which is one of the simplest and most representative distributions of complex random variables. As a result, the second term on the right side of Eq. (8) can still be computed in a simple and closed form, as

$$ D_{KL}(q_h(h|z)||p_h(h)) \quad (13) $$

$$ = D_{KL}(\mathcal{N}_c(h; \mu, \Delta(\sigma), \Delta(\delta))||\mathcal{N}_c(0, I, O)) \quad (14) $$

$$ = \| \mu \|^2 + \| \sigma - 1 - \frac{1}{2} \log(\sigma^2 - |\delta|^2) \|^2, \quad (15) $$

where \cdot^2 and $| \cdot |$ denote the element-wise square and absolute operations, respectively. The term of Eq. (14) indicates the constraint that makes the encoder outputs close to the simple standard complex normal while the pseudo-variance as well as the mean and the variance can change by different input z.

In this paper, we estimate the parameters of the CVAE $\{\phi, \theta\}$ by using the complex-valued gradient method so as to maximize Eq. (8). The simplest one is the complex-valued steepest ascent [30, 31], which iteratively updates each parameter with a complex-valued learning rate $\alpha \in \mathbb{C}$, $\mathfrak{R}(\alpha) > 0$, as

$$ \theta^{(\text{new})} \leftarrow \theta^{(\text{old})} + \alpha \cdot \frac{\partial \mathcal{L}}{\partial \theta}, \quad (16) $$

where the partial derivative in Eq. (16) is the Wirtinger derivative:

$$ \frac{\partial \mathcal{L}}{\partial \theta} = \frac{1}{2} \left(\frac{\partial \mathcal{L}}{\partial \Re(\theta)} - i \frac{\partial \mathcal{L}}{\partial \Im(\theta)} \right). \quad (17) $$

The same is true of ϕ. In our experiments, we utilized the complex Adam [17] for more efficient learning.

3.1. Reparameterization trick in CVAE

As in the conventional VAE, the sampling process in Eq. (12) makes it impossible to back-propagate the gradients from the decoder side to the encoder. Therefore, we propose a reparameterization trick for the CVAE as shown in Fig. 3.

The complex-valued latent variables \mathbf{h} can be decomposed into the real part $x \in \mathbb{R}^H$ and the imaginary part $y \in \mathbb{R}^H$ as $h = x + iy$. Under the assumption of Eq. (12), the elements of \mathbf{h} are independent of each other, and x and y follow the Gaussian distribution with the mean of $\mathbb{R}(\mu)$ and $\Im(\mu)$ and the variance of $\sigma_x \triangleq \frac{\sigma + |\delta|^2}{2}$ and $\sigma_y \triangleq \frac{\sigma - |\delta|^2}{2}$, respectively. Because there are correlations $\rho \triangleq \frac{\sigma}{\sigma_x \sigma_y}$ between x and y, the latent variables follow the probability

$$ \mathcal{N}(\Im(\mu) + \rho \frac{\sigma_y}{\sigma_x} \sigma_j \circ (\bar{x} - \mathbb{R}(\mu)), (1 - \rho^2) \circ \sigma_y) \quad (18) $$

after we sample $\bar{x} = \mathbb{R}(\mu) + \sigma_j \circ \epsilon_x$ where $\epsilon_x \sim \mathcal{N}(0, I)$. Therefore, we can sample \bar{y} using another standard normal random variable $\epsilon_y \sim \mathcal{N}(0, I)$ as

$$ \bar{y} = \Im(\mu) + \rho \frac{\sigma_y}{\sigma_x} \sigma_j \circ (\bar{x} - \mathbb{R}(\mu)) + \sqrt{(1 - \rho^2) \circ \sigma_y} \circ \epsilon_y, \quad (19) $$

where $\sqrt{\cdot}$ denotes the element-wise square. Summarizing the above, we can sample latent variables \mathbf{h} as follows:

$$ \hat{h} = \mu + \kappa_x \circ \epsilon_x + \kappa_y \circ \epsilon_y \quad (18) $$

$$ \kappa_x \triangleq \frac{\sigma + \delta}{\sqrt{2\sigma + 2\mathbb{R}(\delta)}} \quad (19) $$

$$ \kappa_y \triangleq \frac{i \sqrt{\sigma^2 - |\delta|^2}}{\sqrt{2\sigma + 2\mathbb{R}(\delta)}} \quad (20) $$

Figure 2: The CVAE consists of (a) an encoder E that inputs complex-valued observation z and outputs the distribution of complex-valued latent variables, and (b) a decoder D that reconstructs the observation z' from the latent variables.

Figure 3: Reparameterization trick in CVAE. The solid and dotted lines are forward pass and sampling process, respectively.
In contrast, the CV AE generated superior \textit{“VAE(R+I)”} could not model the high frequencies very well, in both objective and subjective criteria, as shown in Table 2. The CV AE significantly outperformed the two \textit{VAE} methods.

4.2. Results and discussion

The CVAE significantly outperformed the two \textit{VAE} methods in both objective and subjective criteria, as shown in Table 2. \textit{“VAE(R+I)”} could not model the high frequencies very well, as shown in Fig. 4. In contrast, the CVAE generated superior complex spectra that had fine structures and formants. This is because the CVAE can capture the frequent complex spectral patterns due to its direct complex encoding system and the complex gradient method that keep the complex structures of the data. When we compare the results of the two conventional \textit{VAE} methods, the performance of \textit{“VAE(GL)”} was worse than that of \textit{“VAE(R+I)”} in the MOS criterion, as the Griffin-Lim algorithm generates perceptually poor signals. For all methods, we feel that the performance could be improved by a deeper architecture, convolution layers, skip connections, and other techniques. This will be investigated in our future work.

As a reference, we also took a look at our method without using the pseudo-variance δ as the output of the encoder (i.e., always $\delta = 0$). The absence of δ degraded the performance, as depicted in the \textit{“CVAE(w/o δ)”} row in Table 2. This means that capturing the correlations between the real and imaginary parts of the latent variables is important in the CVAE.

5. Conclusion

In this paper, we proposed a new generative model, the CVAE, to directly represent complex spectra by extending the \textit{VAE}. The CVAE is based on the assumption that the complex-valued latent variables follow the complex normal with diagonal covariance and pseudo-covariance matrices. We showed that the sampled complex-valued latent variable can be back-propagated by using our reparameterization trick. We demonstrated the effectiveness of CVAE through analysis-by-synthesis experiments. Our findings demonstrate that the CVAE has the potential to be just as a fundamental model as the \textit{VAE} and can be applied to many tasks such as speech synthesis, voice conversion, source separation, and even image or other signal processing.

6. Acknowledgements

This work was partially supported by JSPS KAKENHI Grant Number 18K18069.
7. References

