Hierarchical Multi-Stage Word-to-Grapheme Named Entity Corrector for Automatic Speech Recognition

Abhinav Garg, Ashutosh Gupta, Dhananjaya Gowda, Shatrughan Singh, Chanwoo Kim

Samsung Research Korea
{abhinav.garg, g.ashu, d.gowda, shatrughan.s, chanw.com}@samsung.com

Abstract

In this paper, we propose a hierarchical multi-stage word-to-grapheme Named Entity Correction (NEC) algorithm. Conventional NEC algorithms use a single-stage grapheme or phoneme level edit distance to search and replace Named Entities (NEs) misrecognized by a speech recognizer. However, longer named entities like song titles cannot be easily handled by such a single stage correction. We propose a three-stage NEC, starting with a word-level matching, followed by a phonetic double metaphone based matching, and a final grapheme level candidate selection. We also propose a novel NE Rejection mechanism which is important to ensure that the NEC does not replace correctly recognized NEs with unintended but similar named entities. We evaluate our solution on two different test sets from the call and music domains, for both server as well as on-device speech recognition configurations. For the on-device model, our NEC outperforms an n-gram fusion when employed standalone. Our NEC reduces the word error rate by 14% and 63% relatively for music and call, respectively, when used after an n-gram based biasing language model. The average latency of our NEC is under 3 ms per input sentence while using only ~1 MB for an input NE list of 20,000 entries.

Index Terms: Named Entity Corrector, Spell Correction, Automatic Speech Recognition, Domain biasing, NE Rejection

1. Introduction

End-to-end Automatic Speech Recognition (ASR) models encompass the separate components such as acoustic, lexicon, and language model of a conventional ASR model into a single network [1, 2, 3, 4, 5]. It enables training and optimizing the different components together, thereby simplifying the development of ASR systems. Listen, Attend and Spell (LAS) [6], and Recurrent Neural Network Transducer (RNN-T) [7, 8] are examples of end-to-end architectures, which have seen wider adoption for both server-based and on-device deployment owing to their competitive performance compared to conventional models for a variety of tasks [9, 10, 5, 11].

End-to-end models are much simpler to train and can achieve a competitive word error rate (WER) compared to conventional ASR systems [12]. However, the misrecognition of rarely occurring words such as named entities (NEs) is a well-known shortcoming of end-to-end models [13]. This is because end-to-end models are trained using a far smaller number of audio-text pairs compared to the large text-only data used to train language models in the conventional ASR systems. An ASR is the first step of any spoken dialog system, and errors in recognition of hypothesis especially named entities cascades in subsequent natural language understanding (NLU) module. Hence a variety of research [14, 15, 16, 17, 18, 19] is being done by researchers in both NLU and ASR community to address this problem.

The problem of NE misrecognition is particularly severe for domains like music, contacts, location, and so on having a large number of infrequent proper nouns. One approach to incorporate domain information into ASR is using on-the-fly rescoring [20, 21] with a domain-specific n-gram language model (LM). Another similar approach is to do a shallow fusion with a domain biased Weighted Finite-State Transducer (WFST) [22, 23, 24]. Some previous works have also explored incorporating the domain-specific LMs into the end-to-end network using different fusion techniques such as shallow, deep [25, 26] and cold [27] fusion. [28, 29] used deep learning approaches for named entity correction whereas [23, 30] also explored using deep neural architectures for contextualizing ASR output where they jointly optimize the ASR along with the contextual embeddings.

While the above methods significantly improve the performance of domain ASR, each of them has some shortcomings. They might require large amounts of domain-specific training data, additional training time; moreover, they might add high latency, or increase the model size making the overall ASR model bulky and slow. This restricts their usage especially for on-device applications with limited memory and latency constraints. Hence, simple edit distance based algorithmic spell correction methods have been proposed [16, 31, 32, 33]. While these are fast and light-weight, they might also suffer from a severe problem of replacing a correct ASR output with its close and confusing match from the corresponding input NE list.

In this paper, we propose a hierarchical multi-stage word-to-grapheme Named Entity Correction (NEC) algorithm. Our NEC uses weighted edit distance and has a NE Rejection module based on ASR beam search outputs to ensure that NEC does not replace any correctly recognized named entity. We follow a multi-stage hierarchical matching approach starting from word to grapheme. At each stage, we select only a sub-set of candidate NEs based on the normalized edit distance which constrains the size of the NE list to be processed in the subsequent stage. In the first two stages, we select candidates based on word level and phoneme level information. In the third stage, we calculate the weighted edit distance of the remaining candidates and choose a candidate with minimum distance. Finally, we verify if this candidate is indeed a better replacement than the ASR output itself. We focus on building light-weight and fast solution that can be used as a standalone domain biasing solution in constrained environments or it can be applied as an additional step along with other domain biasing solutions such as those based on WFST, n-gram, and so on.

The proposed algorithm is evaluated on three test sets - Call, Music, and Open Domain with three different model configurations - the on-device model, on-device model + n-gram, the server model + WFST. For the on-device model, proposed NEC outperforms n-gram fusion when used standalone and gives 14% and 63% relative WER improvement for music and
2. ASR Architecture

For our baseline ASR we use an Attention based Encoder-Decoder (AED) architecture, composed of an encoder, a decoder, and an attention block [6]. Our AED system is constructed using a TensorFlow 2.0 Keras model. This model is trained using an in-house trainer built using TensorFlow 2.0 Keras APIs and the tf.data pipeline. An AED model takes speech as an input and outputs a beam of possible hypotheses, y^0, \ldots, y^{b-1} along with their probability scores (beam scores) p^0, \ldots, p^{b-1}, where b is the beam size, $y^i = P(y^i|x)$, and $p^0 > p^1 \cdots > p^{b-1}$. In this work, we use server and on-device AED models from our previous works [34, 21] for evaluating our AED system.

Decoder (AED) architecture, composed of an encoder, a decoder, and an attention block [6]. Our AED system is constructed using a TensorFlow 2.0 Keras model. This model is trained using an in-house trainer built using TensorFlow 2.0 Keras APIs and the tf.data pipeline. An AED model takes speech as an input and outputs a beam of possible hypotheses, y^0, \ldots, y^{b-1} along with their probability scores (beam scores) p^0, \ldots, p^{b-1}, where b is the beam size, $y^i = P(y^i|x)$, and $p^0 > p^1 \cdots > p^{b-1}$. In this work, we use server and on-device AED models from our previous works [34, 21] for evaluating our AED system.

After obtaining the hypothesis from the AED model, we used a simple keyword-based domain classifier for deciding the domain of the AED output. Based on this domain, we apply an optional domain-specific biasing method as explained in Section 4. Finally, we extract the NE, n^i from the top output y^i of the AED model using regular expression (regex) matching with handcrafted rules. If y^i contains multiple NEs, we process each of them separately with our NEC algorithm. We refrain from using neural domain classifiers [35] and NE extractors [36] to keep our post-processing lightweight and fast. Neural domain classifiers and NE extractors can be further used to improve the overall performance.

3. Named Entity Corrector

A block schematic of the proposed multi-stage Named Entity Corrector (NEC) is shown in Fig. 1. Given ASR outputs y^0, \ldots, y^{b-1}, an NE list $L = \{a_1, a_2, \ldots, a_n\}$ containing possible alternatives for NE in ASR output, the purpose of an NEC is to replace the NE in the ASR output with a better alternative from the input NE list L_0 if available.

![Figure 1: Block schematic of the proposed Named Entity Corrector (NEC)](image)

We follow a hierarchical multi-stage, multi-granular approach starting from word to grapheme. At each stage, we select only a subset of candidate NEs based on the normalized edit distance which constrains the size of the NE list to be processed in the subsequent stage. In the first stage, a word level edit distance is used to shortlist NE candidates, which are refined at the second stage using a double meta-phone based edit distance. In the third stage, we calculate the weighted edit distance for all remaining candidates and choose a candidate with minimum distance. Finally, we check if the obtained candidate is indeed a good replacement for the input NE using its beam information. Now, we explain each of these stages in details.

3.1. Word level matching

At the first stage, we select candidate NEs from the NE list L_0 based on their normalized word-level edit distance with NE n^i corresponding to the top ASR hypothesis y^i. In particular, given an input NE list L_0 and NE n^i, L_1 is the list of all NEs $n_i \in L_0$ such that:

$$d_i^1 = \text{WordEd}(n_i, n^i)$$ (1)

$$L_1 = \{ n_i | d_i^1 < \epsilon_1, \forall n_i \in L_0 \}$$ (2)

where WordEd(n_i, n^i) is a word level edit-distance between n_i and n^i normalized by number of words in n^i. ϵ_1 is the threshold we use for selecting potential replacement candidates from the input NE list L_0.

3.2. Phonetic matching

In the next stage we calculate phonetic similarity between NEs in L_1 and the input NE n^i. For doing this, we use Double MetaPhone (DMP) algorithm [37]. DMP maps an input token to its approximate phonetic representation using predefined rules and heuristics. It was primarily developed for English but was later extended to other languages as well.

We compute the DMP code for a given multi-word NE by obtaining the DMP code for each word in the NE and later concatenating them with a space. Similar to stage one, we calculate normalized edit distance between DMP code for input NE n^i and each NEs in L_1. Based on this we create a next list of NE candidates $L_2 \subset L_1$, such that:

$$d_i^2 = ED(DMP(n_i), DMP(n^i))$$ (3)

$$L_2 = \{ n_i | d_i^2 < \epsilon_2, \forall n_i \in L_1 \}$$ (4)

where $DMP(n_i)$ is DMP code for n_i computed as described above. $ED(a,b)$ is the grapheme level edit-distance between a and b normalized by the length of b. ϵ_2 is the filtering parameter used to reduce the size of L_2.

3.3. Grapheme level matching

At the third stage, we calculate grapheme based edit distance d_i^3 as $d_i^3 = ED(n_i, n^i)$ for each candidate NE $n_i \in L_2$. For choosing our final replacement NE, n_r, we calculate weighted edit distance for each candidate NE in L_2 as:

$$d_i^4 = w_1 * d_i^1 + w_2 * d_i^2 + w_3 * d_i^3$$ (5)

where w_1, w_2, w_3 are the weights given to word level, phonetic level and grapheme level edit distance respectively and $w_1 + w_2 + w_3 = 1$. $n_r \in L_2$ is the final suggestion NE with weighted edit distance d_i^4 s.t. $d_i^4 = \min(d_i^4) \forall n_i \in L_2$. If $d_i^4 < \epsilon_3$, our NEC passes n_r to the next stage for final verification else our NEC terminates with no suggestion.
3.4. NE Rejection

A simple edit distance based NEC has a shortcomings of replacing NEs which are correctly predicted by the ASR. This problem is more profound for domains like call, music, location. For such domains either it is difficult to get an exhaustive NE list, or the NE list might be too large resulting in resource-intensive and slow NEC. In such cases instead of the correct NE, the NE lists might contain similar but incorrect replacements which can degrade the performance of the ASR. Hence, apart from improving domain-specific performance, our main focus was to ensure that our NEC solution does not cause any degradation to ASR output irrespective of the domain or the amount of NEs used. We use the beam information of the ASR to accomplish this. In this module, we verify whether \(n_r \) is indeed a suitable replacement for \(n_i \).

For this stage first we extract \(n_1, \ldots, n_{b-1} \), where \(n_i \) is the NE present in top \(b \) hypothesis of the ASR, \(y^i \). For extracting \(n_i \) we use the following approaches. First we try to extract \(n_i \) using the same regex rule as \(n^0 \). As \(y^i \) might be erroneous, we use a fall back NE extractor, which aligns \(y^0 \) and \(y^i \) using minimum edit distance alignment and extracts NE \(n_i \) from \(y^i \) corresponding to \(n_i^0 \).

If \(n_r \) matches with any of the beam NEs, \(n_0^0, \ldots, n_{b-1} \) then we straightforward accept \(n_r \) as a replacement for \(n_i^0 \). Otherwise for both \(n_i^0 \) and \(n_r \) we calculate rejection score, \(r_n \) as :

\[
r_n = \sum_{i=0}^{b-1} p^i \cdot (w_1 \cdot \text{WordEd}(n_i, n) + w_2 \cdot \text{ED}(DMP(n_i), DMP(n)) + w_3 \cdot \text{ED}(n_i, n))
\]

Where \(n \) can be either \(n_i \) or \(n_r \), \(p^i \) represents probability for ASR output \(y^i \). Finally, if \(r_{n_i^0} > r_{n_r} \), we accept \(n_r \) as a suitable replacement for \(n_i^0 \) otherwise we reject \(n_r \) and output no suggestion for \(n_i^0 \).

4. Experimental Setup

We use two AED systems to evaluate our NEC algorithm. The first model is similar to [34], which is trained with anonymized open domain corpus consisting of around 10k hours of transcribed speech. The second model is similar to [21], which is essentially the first model compressed and quantized for on-device applications. Both models use word BPE units [38] as their output and have an output vocabulary size of 10k. We call the first model as the server model and the second model as the on-device model. All the models in this paper are trained using an in-house trainer built using the Tensorflow 2 Keras APIs.

The on-device model has 20 times fewer parameters than the server model as it is SVD [39, 9] compressed and quantized. We use beam search with a beam size of 8 for decoding of server model and beam size of 4 for the on-device model. Both these models use MoChA attention [21, 40] and are streaming with real-time decoding. We apply NEC only after the complete ASR output is available.

We use \(\epsilon_1 \) and \(\epsilon_2 \) as 0.5 and \(\epsilon_3 \) as 0.25. We give highest weightage to grapheme level distance with \(w_3 = 0.6 \) while \(w_2 \) and \(w_1 \) are set to 0.25 and 0.15 respectively. These parameters can be further fine tuned with grid search and optimized for each domain. However, for consistency, we use the same set of parameters for all our experiments across various domains.

We perform experiments for 2 domains namely Call and Music. For call NE list, we collected around 20k most common English names. For music NE list, we used titles of about 400k most popular songs and names of 100k most popular artists. We experiment with 3 test sets - Call, Music, and Open domain. The Call test set contains about 5k utterances of call requests (e.g. call becker mathewson). The Music test set contains 20k utterances of requests to play music (e.g. play ariana grande, play not afraid by eminem). Open domain contains 1.5k utterances out of which about 4% are from music or call domain. For Open domain test set depending upon classified domain we use either Call post-processing (biasing + NEC) or Music post processing or none.

We also optionally use WFST rescoring with the server model and n-gram rescoring with the on-device model. Both these domain biasing solutions are built from the text corpus obtained by expanding NE matching regex rules with all possible NEs in the NE list. We use fusion weights of 0.2 for n-gram LM and 0.25 for WFST fusion.

For edit distance calculations, we use Levenshtein distance [41] as our edit distance matrix. To perform ED calculations, we apply symmetric delete spelling correction algorithm, which is about six orders of magnitude faster than Norvig’s [31] spelling corrector.

5. Results

In this section, we discuss the results obtained with our NEC algorithm. Table 1 contains the results and contributions for each module of our algorithm in terms of Word Error Rate (WER) and Sentence Error Rate (SER). We start with only grapheme level matching. After that, we add phonetic level matching using DMP, Word level matching and finally, we add NE Rejection. For all the results in Table 1 we used the default configuration of NEC parameters mentioned in Section 4.

We evaluate our algorithm on three test sets - Call, Music and Open Domain. For The Call test set, over 90% of the ground truth NEs are already present in the input NE list. The Music test set has about 50% of the ground truth NEs present in the input NE list. Finally, The Open Domain test set has only a few (about 4%) music or call domain sentences.

For each of these test sets, we evaluate 3 different scenarios. First, when NEC is used as the only domain-specific post-processing module for the on-device model. Secondly, we explore the use of NEC along with an n-gram domain LM. Finally, we explore the use of NEC along with a much larger server-side model having a WFST for domain biasing. Please note our NEC solution is the same for all these cases; however, the base model varies in terms of parameters and beam size.

For the Call test set, we observe that NE Rejection marginally degrades the performance. This degradation is expected because over 90% of the ground truth NEs are already present in the NE list. Therefore any rejection is presumably a bad rejection. Hence it becomes difficult for NE Rejection to make a decision. We obtain a minimum of 53% and a maximum of 69.4% relative WER improvement for the call test set.

The Music test set is the best application scenario for our NEC algorithm where only about 50% of the ground truth NEs are present in the NE list. However, the NE list is huge and may contain confusing incorrect replacements for other 50% of the ground truth NEs. As can be seen, NE Rejection consistently improves performance for this test set. For the server-side model, we obtain about 7.3% relative WER improvement without NE Rejection and about 8.6% with NE Rejection.

To further evaluate the usefulness of NE Rejection, we compute results for the music test set with only 2, 5, 10, 20% of the NE list selected randomly from the full NE list of 500k
In this paper, we presented a hierarchical multi-stage word-to-grapheme Named Entity Correction (NEC) algorithm. We start from word-level matching, followed by a phonetic matching and finally a grapheme level candidate selection. We also presented a novel NE candidate rejection mechanism to prevent NEC from replacing a correctly recognized NE. We evaluate improvement obtained by each stage. We also perform experiments with various NE list sizes, where NEC without NE Rejection degrades the performance for a few list sizes; however, with NE Rejection, it always performs better than the baseline. The proposed NEC has a latency of 2-3 ms and a memory footprint of about 3.5-4 times the size of the NE list itself. For a resource constraint on-device model, it was used about 8% for the n-gram case and about 11% for the no-bias case.

6. Conclusion

In this paper, we introduced a hierarchical multi-stage word-to-grapheme Named Entity Correction (NEC) algorithm. We start from word-level matching, followed by phonetic matching and finally a grapheme level candidate selection. We also present a novel NE candidate rejection mechanism to prevent NEC from replacing a correctly recognized NE. We evaluate improvement obtained by each stage. We also perform experiments with various NE list sizes, where NEC without NE Rejection degrades the performance for a few list sizes; however, with NE Rejection, it always performs better than the baseline. The proposed NEC has a latency of 2-3 ms and a memory footprint of about 3.5-4 times the size of the NE list. For a resource constraint on-device model, it was used about 8% for the n-gram case and about 11% for the no-bias case.

7. References

