Real Time Speech Enhancement in the Waveform Domain

Alexandre Défossez1,2,3, Gabriel Synnaeve1, Yossi Adi1

1Facebook AI Research 2INRIA 3PSL Research University
defossez,gab,adiyoss@fb.com

Abstract

We present a causal speech enhancement model working on the raw waveform that runs in real-time on a laptop CPU. The proposed model is based on an encoder-decoder architecture with skip-connections. It is optimized on both time and frequency domains, using multiple loss functions. Empirical evidence shows that it is capable of removing various kinds of background noise including stationary and non-stationary noises, as well as room reverber. Additionally, we suggest a set of data augmentation techniques applied directly on the raw waveform which further improve model performance and its generalization abilities. We perform evaluations on several standard benchmarks, both using objective metrics and human judgements. The proposed model matches state-of-the-art performance of both causal and non causal methods while working directly on the raw waveform.

Index Terms: Speech enhancement, speech denoising, neural networks, raw waveform

1. Introduction

Speech enhancement is the task of maximizing the perceptual quality of speech signals, in particular by removing background noise. Most recorded conversational speech contains some form of noise that hinders intelligibility, such as street noise, dogs barking, keyboard typing, etc. Thus, speech enhancement is a particularly important task in itself for audio and video calls \cite{1}, hearing aids \cite{2}, and can also help automatic speech recognition (ASR) systems \cite{3}. For many such applications, a key feature of a speech enhancement system is to run in real time and with as little lag as possible (online), on the communication device, preferably on commodity hardware.

Decades of work in speech enhancement showed feasible solutions which estimated the noise model and used it to recover noise-deduced speech \cite{4,5}. Although those approaches can generalize well across domains they still have trouble dealing with common noises such as non-stationary noise or a babble noise which is encountered when a crowd of people are simultaneously talking. The presence of such noise types degrades hearing intelligibility of human speech greatly \cite{6}. Recently, deep neural networks (DNN) based models perform significantly better on non-stationary noise and babble noise while generating higher quality speech in subjective and objective evaluations over traditional methods \cite{7,8}. Additionally, deep learning based methods have also shown to be superior over traditional methods for the related task of a single-channel source separation \cite{9,10,11}.

Inspired by these recent advances, we proposed a real-time version of the DEMUCS \cite{11} architecture adapted for speech enhancement. It consists of a causal model, based on convolutions and LSTMs, with a frame size of 40ms, a stride of 16ms, and that runs faster than real-time on a single laptop CPU core. For audio quality purposes, our model goes from waveform to waveform, through hierarchical generation (using U-Net \cite{12} like skip-connections). We optimize the model to directly output the “clean” version of the speech signal while minimizing a regression loss function (L1 loss), complemented with a spectrogram domain loss \cite{13,14}. Moreover, we proposed a set of simple and effective data augmentation techniques: namely frequency band masking and signal reverberation. Although enforcing a vital real-time constraint on model run-time, our model yields comparable performance to state of the art model by objective and subjective measures.

Although, multiple metrics exist to measure speech enhancement systems these have shown to not correlate well with human judgements \cite{1}. Hence, we report results for both objective metrics as well as human evaluation. Additionally we conduct an ablation study over the loss and augmentation functions to better highlight the contribution of each part. Finally, we analyzed the artifacts of the enhancement process using Word Error Rates (WERs) produced by an Automatic Speech Recognition (ASR) model.

Results suggest that the proposed method is comparable to the current state-of-the-art model across all metrics while working directly on the raw waveform. Moreover, the enhanced samples are found to be beneficial for improving an ASR model under noisy conditions.

2. Model

2.1. Notations and problem settings

We focus on monaural (single-microphone) speech enhancement that can operate in real-time applications. Specifically, given an audio signal $x \in \mathbb{R}^T$, composed of a clean speech $y \in \mathbb{R}^T$ that is corrupted by an additive background signal $n \in \mathbb{R}^T$ so that $x = y + n$. The length, T, is not a fixed value across samples, since the input utterances can have different durations. Our goal is to find an enhancement function f such that $f(x) \approx y$.

In this study we set f to be the DEMUCS architecture \cite{11}, which was initially developed for music source separation, and adapt it to the task of causal speech enhancement, a visual description of the model can be seen in Figure 1a.

2.2. DEMUCS architecture

DEMUCS consists in a multi-layer convolutional encoder and decoder with U-net \cite{12} skip connections, and a sequence modeling network applied on the encoders’ output. It is characterized by its number of layers L, initial number of hidden channels H, layer kernel size K and stride S and resampling factor U. The encoder and decoder layers are numbered from 1 to L (in reverse order for the decoder, so layers at the same scale have the same index). As we focus on monophonic speech enhancement, the input and output of the model has a single channel only.

Formally, the encoder network E gets as input the raw waveform and outputs a latent representation $E(x) = z$. Each layer
The LSTM network consists of 2-layers and 2 channels, followed by a ReLU activation, a “1x1” convolution with 2 \(H \) output channels and finally a GLU [15] activation that converts back the number of channels to \(2^{-1}H \), see Figure 1b for a visual description.

Next, a sequence modeling \(R \) network takes the latent representation \(z \) as input and outputs a non-linear transformation of the same size, \(R(z) = LSTM(z) + z \), denoted as \(\hat{z} \). The LSTM network consists of 2-layers and \(2^{-1}H \) hidden units. For causal prediction, we use an unidirectional LSTM, while for non causal models, we use a bidirectional LSTM, followed by a linear layer to merge the both outputs.

Lastly, a decoder network \(D \), takes as input \(\hat{z} \) and outputs an estimation of clean signal \(D(\hat{z}) = \hat{y} \). The i-th layer of the decoder takes as input \(2^{-1}H \) channels, and applies a 1x1 convolution with \(2^i \) channels, followed by a GLU activation function that outputs \(2^{i-1}H \) channels and finally a transposed convolution with a kernel size of 8, stride of 4, and \(2^{i-2}H \) output channels accompanied by a ReLU function. For the last layer the output is a single channel and has no ReLU. A skip connection connects the output of the i-th layer of the encoder and the input of the i-th layer of the decoder, see Figure 1a.

We initialize all model parameters using the scheme proposed by [16]. Finally, we noticed that upsampling the audio by a factor \(U \) before feeding it to the encoder improves accuracy.

We downsample the output of the model by the same amount. The resampling is done using a sinc interpolation filter [17], as part of the end-to-end training, rather than a pre-processing step.

2.3. Objective

We use the L1 loss over the waveform together with a multi-resolution STFT loss over the spectrogram magnitudes similarly to the one proposed in [13, 14]. Formally, given \(y \) and \(\hat{y} \) be the clean signal and the enhanced signal respectively. We define the STFT loss to be the sum of the spectral convergence (sc) loss and the magnitude loss as follows,

\[
L_{\text{sc}}(y, \hat{y}) = L_{\text{sc}}(y, \hat{y}) + L_{\text{mag}}(y, \hat{y})
\
L_{\text{sc}}(y, \hat{y}) = \|\text{STFT}(y) - \text{STFT}(\hat{y})\|_F
\
L_{\text{mag}}(y, \hat{y}) = \frac{1}{p} \|\log|\text{STFT}(y)| - \log|\text{STFT}(\hat{y})|\|_1
\]

where \(\| \cdot \|_F \) and \(\| \cdot \|_1 \) are the Frobenius the \(L_1 \) norms respectively. We define the multi-resolution STFT loss to be the sum of all STFT loss functions using different STFT parameters. Overall we wish to minimize the following,

\[
\frac{1}{T} \|\|\|y - \hat{y}\|_1 + \sum_{i=1}^{M} L^{(i)}_{\text{sc}}(y, \hat{y})\|
\]

where \(M \) is the number of STFT losses, and each \(L^{(i)}_{\text{sc}} \) applies the STFT loss at different resolution with number of FFT bins \(\in \{512, 1024, 2048\} \), hop sizes \(\in \{50, 120, 240\} \), and lastly window lengths \(\in \{240, 600, 1200\} \).

3. Experiments

We performed several experiments to evaluate the proposed method against several highly competitive models. We report objective and subjective measures on the Valentini et al. [18] and Deep Noise Suppression (DNS) [19] benchmarks. Moreover, we run an ablation study over the augmentation and loss functions. Finally, we assessed the usability of the enhanced samples to improve ASR performance under noisy conditions. Enhanced samples can be found in the following link:

https://ai.honu.io/is2020/samples.html

3.1. Implementation details

Evaluation Methods We evaluate the quality of the enhanced speech using both objective and subjective measures. For the objective measures we use: (i) PESQ: Perceptual evaluation of speech quality, using the wide-band version recommended in ITU-T P.862.2 [24] (from -0.5 to 4.5) (ii) Short-Time Objective Intelligibility (STOI) [25] (from 0 to 100) (iii) CSIG: Mean opinion score (MOS) prediction of the signal distortion attending only to the speech signal [26] (from 1 to 5). (iv) CBAB: MOS prediction of the intrusiveness of background noise [26] (from 1 to 5). (v) COVL: MOS prediction of the overall effect [26] (from 1 to 5).

For the subjective measure, we conducted a MOS study as recommended in ITU-T P.835 [27]. For that, we launched a crowd source evaluation using the CrowdMOS package [28]. We randomly sample 100 utterances and each one was scored by 15 different rateres along three axis: level of distortion, in-
Table 1: Objective and Subjective measures of the proposed method against SOTA models using the Valentini benchmark [18].

<table>
<thead>
<tr>
<th>Noisy</th>
<th>PESQ</th>
<th>STOI (%)</th>
<th>pred. SIG</th>
<th>pred. CBAK</th>
<th>pred. COVL</th>
<th>MOS SIG</th>
<th>MOS BAK</th>
<th>MOS OVL</th>
<th>Causal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>SEGAN [7]</td>
<td>2.16</td>
<td>-</td>
<td>3.48</td>
<td>2.94</td>
<td>2.80</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Wave-U-Net [20]</td>
<td>2.40</td>
<td>-</td>
<td>3.52</td>
<td>3.24</td>
<td>2.96</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>SEGAN-D [8]</td>
<td>2.39</td>
<td>-</td>
<td>3.46</td>
<td>3.11</td>
<td>3.50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>MMSE-GAN [21]</td>
<td>2.53</td>
<td>-</td>
<td>3.80</td>
<td>3.12</td>
<td>3.14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>MetaGSC [22]</td>
<td>2.86</td>
<td>-</td>
<td>3.99</td>
<td>3.18</td>
<td>3.42</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>DeepMMSE [23]</td>
<td>2.95</td>
<td>94</td>
<td>4.28</td>
<td>3.46</td>
<td>3.64</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>DEMUCS (H=64, S=2, U=2)</td>
<td>3.07</td>
<td>95</td>
<td>4.31</td>
<td>3.4</td>
<td>3.63</td>
<td>4.02</td>
<td>3.55</td>
<td>3.63</td>
<td>No</td>
</tr>
</tbody>
</table>

Wiener	2.22	93	3.23	2.68	2.67	-	-	-	Yes
DeepMMSE [23]	2.77	93	4.14	3.32	3.46	4.11	3.69	3.67	Yes
DEMUCS (H=48, S=4, U=1)	2.93	95	4.22	3.25	3.52	4.08	3.59	3.40	Yes
DEMUCS (H=64, S=4, U=1)	2.91	95	4.20	3.26	3.51	4.03	3.69	3.39	Yes
DEMUCS (H=64, S=4, U=1) + dry=0.05	2.88	95	4.14	3.21	3.54	4.10	3.58	3.72	Yes
DEMUCS (H=64, S=4, U=1) + dry=0.1	2.81	95	4.07	3.10	3.42	4.18	3.45	3.60	Yes

Table 2: Subjective measures of the proposed method with different treatment of reverb, on the DNS blind test set [19]. Recordings are divided in 3 categories: no reverb, reverb (artificial) and real recordings. We report the OVL MOS. All models are causal. For DEMUCS, we take U=4, H=64 and S=4.

<table>
<thead>
<tr>
<th>No Rev.</th>
<th>Reverb</th>
<th>Real Rec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noisy</td>
<td>3.1</td>
<td>3.2</td>
</tr>
<tr>
<td>NS-Net [30, 19]</td>
<td>3.2</td>
<td>3.1</td>
</tr>
<tr>
<td>DEMUCS, no reverb</td>
<td>3.7</td>
<td>2.7</td>
</tr>
<tr>
<td>DEMUCS, remove reverb</td>
<td>3.6</td>
<td>2.6</td>
</tr>
<tr>
<td>DEMUCS, keep reverb</td>
<td>3.6</td>
<td>3.0</td>
</tr>
<tr>
<td>DEMUCS, keep 10% rev.</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>DEMUCS, keep 10% rev., two sources</td>
<td>3.6</td>
<td>2.8</td>
</tr>
</tbody>
</table>

We present on Table 2 the overall MOS evaluations on the 3 categories of the DNS [19] blind test set: no reverb (synthetic mixture without reverb), reverb (synthetic mixture, with artificial reverb) and real recordings. We test different strategies for the reverb-like Revecho augmentation described in Section 3.1.2.

Table 1 summarizes the results for Valentini [18] dataset using both causal and non-causal models. Results suggest that DEMUCS matched current SOTA model (DeepMMSE [23]) using both objective and subjective measures, while working directly on the raw waveform and without using extra training data. Additionally, DEMUCS is superior to the other baselines methods, (may they be causal or non-causal), by a significant margin. We also introduce a dry/wet knob, i.e. we output dry · x + (1 − dry) · ỹ, which allows to control the trade-off between noise removal and conservation of the signal. We notice that a small amount of bleeding (5%) improves the overall perceived quality.

We present on Table 2 the overall MOS evaluations on the 3 categories of the DNS [19] blind test set: no reverb (synthetic mixture without reverb), reverb (synthetic mixture, with artifical reverb) and real recordings. We test different strategies for the reverb-like Revecho augmentation described in Section 3.1.2.
We either ask the model to remove it (dereverberation), keep it, or keep only part of it. Finally, we either add the same reverberation to the speech and noise or use different jitters to simulate having two distinct sources. We entered the challenge with the “remove reverber” model, with poor performance on the Reverber category due to dereverberation artifacts\(^1\). Doing partial dereverberation improves the overall rating, but not for real recordings (which have typically less reverber already). On real recordings, simulating reverber with two sources improves the ratings.

3.3. Ablation

In order to better understand the influence of different components in the proposed model on the overall performance, we conducted an ablation study over the augmentation functions and loss functions. We use the causal DEMUCS version and report PESQ and STOI for each of the methods. Results are presented in Table 3. Results suggest that each of the components contribute to overall performance, with the STFT loss and time shift augmentation producing the biggest increase in performance. Notice, surprisingly the *remix* augmentation function has a minor contribution to the overall performance.

3.4. Real-Time Evaluation

We computed the Real-Time Factor (RTF, e.g. time to enhance a frame divided by the stride) under the streaming setting to better match real-world conditions. We benchmark this implementation on a quad-core Intel i5 CPU (2.0 GHz, up to AVX2 instruction set). The RTF is 1.05 for the $H=64$ version, while for the $H=48$ the RTF is 0.6. When restricting execution to a single core, the $H=48$ model still achieves a RTF of 0.8, making it realistic to use in real conditions, for instance along a video call software. We do not provide RTF results for Deep-MMSE [23] since no streaming implementation was provided by the authors, thus making it an unfair comparison.

3.5. The effect on ASR models

Lastly, we evaluated the usability of the enhanced samples to improve ASR performance under noisy conditions. To that end, we synthetically generated noisy data using the LibriSpeech dataset [31] together with noises from the test set of the DNS [19] benchmark. We created noisy samples in a controlled setting where we mixed the clean and noise files with SNR levels $\in\{0, 10, 20, 30\}$. For the ASR model we used a Convolutions and Transformer based acoustic model which get states-of-the-art results on LibriSpeech, as described in [32]. To get Word Error Rates (WERs) we follow a simple Viterbi (argmax) decoding with neither language model decoding nor beam-search. That way, we can better understand the impact of the enhanced samples on the acoustic model. Results are depicted in Table 4.

4. Related Work

Traditionally speech enhancement methods generate either an enhanced version of the magnitude spectrum or produce an estimate of the ideal binary mask (IBM) that is then used to enhance the magnitude spectrum [5, 33].

Over the last years, there has been a growing interest towards DNN based methods for speech enhancement [34, 35, 36, 37, 20, 39, 22, 40, 7, 41, 8, 42, 21, 37]. In [34] a deep feed-forward neural network was used to generate a frequency-domain binary mask using a cost function in the wavefront domain. Authors in [43] suggested to use a multi-objective loss function to further improve speech quality. Alternatively authors in [44, 35] use a recursive neural network (RNN) for speech enhancement. In [7] the authors proposed an end-to-end method, namely Speech Enhancement Generative Adversarial Networks (SEGAN) to perform enhancement directly from the raw waveform. The authors in [41, 8, 42, 21] further improve such optimization. In [37] the authors suggest to use a WaveNet [45] model to perform speech denoising by learning a function to map noisy to clean signals.

While considering causal methods, the authors in [46] propose a convolutional recurrent network at the spectral level for real-time speech enhancement, while Xia, Yangyang, et al. [30] suggest to remove the convolutional layers and apply a weighted loss function to further improve results in the real-time setup. Recently, the authors in [23] provide impressive results for both causal and non-causal models using a minimum mean-square error noise power spectral density tracker, which employs a temporal convolutional network (TCN) a priori SNR estimator.

5. Discussion

We have showed how DEMUCS, a state-of-the-art architecture developed for music source separation in the waveform domain, could be turned into a causal speech enhancer, processing audio in real time on consumer level CPU. We tested DEMUCS on the standard Valentini benchmark and achieved state-of-the-art result without using extra training data. We also test our model in real reverberant conditions with the DNS dataset. We empirically demonstrated how augmentation techniques (reverb with two sources, partial dereverberation) can produce a significant improvement in subjective evaluations. Finally, we showed that our model can improve the performance of an ASR model in noisy conditions even without retraining of the model.

1\(^{\text{MOS for the baselines differ from the challenge as we evaluated on 100 examples per category, and used ITU-T P.835 instead of P.908.}}\)